Spring Boot Advanced

Microservice-Architektur & Distributed Patterns

Alexander Erben

Spring Boot Advanced

In diesem Modul

e Monolith vs. Microservices & DDD-Grundlagen
e Datenhaltung in Microservices (Database per Service, CAP, Eventual Consistency)
e Resilience Patterns: Circuit Breaker, Bulkhead (+ Demo)

e Infrastruktur: APl Gateway, Service Discovery, Externalized Configuration

Alexander Erben

Spring Boot Advanced

Wiederholung: Monolith vs. Microservices

Es geht nicht nur um die Grol3e der Services (Micro), sondern um Unabhangigkeit.

e Monolith: Eine Deployment-Unit, geteilter State, interne Methodenaufrufe.
o Pro: Einfaches Refactoring, ACID-Transaktionen, zu Beginn einfaches
Deployment.

o Con: Scaling nur als Ganzes, Technologie-Lock-in, "Big Ball of Mud".

e Microservices: Unabhangig deploybare Services, Kommunikation tiber Netzwerk.
o Pro: Unabhangiges Scaling, Tech-Stack Freiheit, Isolation von Fehlern.

o Con: Verteilte Komplexitat, Netzwerk-Latenz, Eventual Consistency

Alexander Erben

Spring Boot Advanced

Alexander Erben

Monolith Architecture

o)
!

Load Balancer

l

Monolithic App
(Ul + Business + Data)

Shared
DB

Microservices Architecture

‘ Client ’

!

AP| Gateway

Order Svc Inventory Svc User Svc

Order

User DB
DB

Spring Boot Advanced

Domain Driven Design (DDD)

e Ohne sauberen Schnitt der Fachlichkeit enden Microservices im Chaos
("Distributed Monolith"). DDD ist das Werkzeug fur diesen Schnitt.

e Die wichtigste Erkenntnis in DDD: Es gibt kein einheitliches Datenmodell fir
das gesamte Unternehmen.

 Bounded Context:
Eine explizite Grenze, innerhalb derer ein bestimmtes Modell gltig ist.
e Ubiquitous Language:

Eine gemeinsame, unmissverstandliche Sprache zwischen Entwicklern und
Fachexperten innerhalb dieses Kontexts.

Alexander Erben

Spring Boot Advanced

Beispiel: Polysemie (Mehrdeutigkeit)

Der Begriff "Produkt"” bedeutet je nach Abteilung etwas voéllig anderes:

Bounded Context: Sales / Shop Bounded Context: Fulfillment
Product Product (Consignment)
- title: String - weight: double
- description: String - dimensions: Dim3D
- price: Money - warehouseLocation: String
- category: Enum - stockLevel: int

Context Mapping
(Anti-Corruption Layer)

Customer Recipient
- email: String - shippingAddress: Address
- preferences: List - deliverylnstructions: String
- cart: ShoppingCart - signatureRequired: boolean

Ubiquitous Language:
Begriffe sind nur INNERHALB
der Grenze eindeutig!

Alexander Erben

Spring Boot Advanced

Beispiel: Polysemie (Mehrdeutigkeit)

e Sales: Braucht Preis, Bilder, SEO-Texte.
e Fulfillment: Braucht Gewicht, Lagerplatz, Gefahrgutklasse. Preis ist hier egal.

e Fazit: Wir bauen keine riesige Product -Klasse mit 200 Feldern, sondern zwei
getrennte Services (SalesService , ShippingService) mit eigenen Modellen.

Alexander Erben

Spring Boot Advanced

Context Mapping: Wie kommunizieren die Grenzen?

Wenn Service A mit Service B redet, mussen wir die Beziehung definieren.

 Shared Kernel: Beide teilen sich eine Library. Vorsicht: hohe Kopplung.

e Customer |/ Supplier: Ein Team (Supplier) liefert, was das andere (Customer)
braucht.
o Anti-Corruption Layer (ACL):
o Service B will sein sauberes Modell nicht durch das "schmutzige" oder fremde
Modell von A verunreinigen.
o Er baut eine Adapter-Schicht, die Anfragen von A Ubersetzt.
o Essentiell bei Integration von Legacy-Systemen!

e Open Host Service: Ein Service bietet eine offentliche, standardisierte API (z.B.
REST/Swagger) fur alle an.

Alexander Erben

Spring Boot Advanced

Datenverwaltung in Microservice-Architekturen

Alexander Erben

Spring Boot Advanced

Database per Service

Eine der wichtigsten Regel in Microservice-Architekturen: Ein Service darf niemals
direkt auf die Datenbank eines anderen Services zugreifen.

e Warum?
Entkopplung. Wenn Service A das Schema andert, darf Service B nicht brechen.

 Herausforderung: Wie joine ich Daten?
o LOsung 1: APl Composition (Gateway/Aggregator ruft beide auf).

o Losung 2: Data Replication / Caching (Service B speichert eine Kopie der
notwendigen Daten von A via Events).

Alexander Erben 10

Spring Boot Advanced

CAP Theorem & Eventual Consistency

In verteilten Systemen missen wir uns entscheiden (Pick two):

1. Consistency (Alle sehen die gleichen Daten zur gleichen Zeit).

2. Availability (Das System antwortet immer).

3. Partition Tolerance (Das System lauft weiter, auch wenn das Netzwerk bricht).
Da Netzwerke brechen werden (P), missen wir zwischen C und A wahlen.

Microservices wahlen meist AP (Availability) und akzeptieren Eventual Consistency
(Daten sind "irgendwann" konsistent).

Alexander Erben

11

Spring Boot Advanced

Verteilte Transaktionen in Spring Boot

e Spring Boot unterstitzt JTA (Java Transaction API) und damit XA-Transaktionen
(z.B. mit spring-boot-starter-jta-atomikos).

e Dies ermdglicht die Koordination von Transaktionen tber mehrere XA-kompatible
Ressourcen (z.B. zwei Datenbanken, oder eine Datenbank und einen JMS-
Broker) hinweg.

e |In Microservice-Architekturen ist dies aber nicht von Vortell.

Alexander Erben

12

Spring Boot Advanced

JTAIXA ist nicht gut fur Microservices geeignet

1. REST ist zustandslos: Der Transaktionskontext misste in Requests mit Headern
propagiert werden. Dies widerspricht aber der Zustandslosigkeit von REST. Jeder
Service agiert mit seinen eigenen Ressourcen in lokalen Transaktionen.

2. Blocking & Availability: XA erfordert, dass alle beteiligten Ressourcen bis zum
Commit oder Rollback gesperrt bleiben. In einem System mit vielen, tber HTTP
gekoppelten Services wirde dies zu massiven Performance- und
Verfligbarkeitsproblemen flihren (Verstol3d gegen das CAP-Theorem zugunsten von

strikter Konsistenz).

3. Fehlende Protokoll-Unterstitzung: Es gibt kein standardisiertes, weit
verbreitetes Protokoll, um XA-Transaktionen Uber HTTP/REST-Servicegrenzen
hinweg zu propagieren.

13

Alexander Erben

Spring Boot Advanced

Alternative zu XA: Das Saga Pattern

o JTA/XA st flr eng gekoppelte Systeme gedacht, nicht fiir Microservices.

e Die Alternative: Sagas — eine Folge von lokalen Transaktionen mit Kompensationslogik.
Zwei Ansatze

Ansatz Beschreibung Pro/Con
Choreography Services reagieren auf Events Lose Kopplung, aber unubersichtlich

Orchestration Zentraler Koordinator steuert Klarer Ablauf, aber "Gott-Service"-Gefahr

Bl Detaillierte Behandlung von Saga, Outbox Pattern und Idempotenz — siehe Modul Messaging

Alexander Erben

14

Spring Boot Advanced

Resilience & Stability Patterns

Alexander Erben

15

Spring Boot Advanced

Circuit Breaker

e Der Circuit Breaker schutzt das Gesamtsystem vor kaskadierenden Fehlern.

e \Wenn ein Zielservice nicht erreichbar ist oder zu viele Fehler produziert, werden
Aufrufe nicht mehr ausgefuhrt, sondern sofort abgewiesen (Fail Fast).

e Das verhindert Timeout-Kaskaden und bewahrt freie Ressourcen.

Alexander Erben

16

Spring Boot Advanced

Zustande

e Closed: Normalbetrieb, Fehler
werden beobachtet.

e Open: Fehlerschwelle
Uberschritten — neue Requests
sofort ablehnen.

e Half-Open: Testphase: Einige
Requests werden
durchgelassen, um zu prifen, ob
der Service wieder gesund ist.

Alexander Erben

Failure Threshold
Exceeded

CLOSED
(Normal Operation)

OPEN
(Failing Fast)

Test Request
Fail

e

HALF-OPEN
(Testing)

Reset Timeout
Expired

Test Request .
Success

17

Spring Boot Advanced

Circuit Breaker mit Spring: Annotationsbasiert

@Service
public class RecommendationClient {

private final WebClient client = WebClient.create("http://recommendation-service");

@CircuitBreaker(name = '"recommendations'", fallbackMethod = "fallback")
public List<String> getRecommendations(String productId) {
return client.get()
.uri("/recommend/{id}", productId)
.retrieve()
.bodyToMono(new ParameterizedTypeReference<List<String>>() {})
.block();

}

private List<String> fallback(String productId, Throwable t) {
return List.of("bestseller-1", "bestseller-2"),
}

Alexander Erben 18

Spring Boot Advanced

Circuit Breaker: Programmatisch

CircuiltBreaker breaker = circuitBreakerRegistry.circuitBreaker('"recommendations");

Supplier<List<String>> call = () -> client.get()
.uri("/recommend/{id}", productId)
.retrieve()

.bodyToMono(new ParameterizedTypeReference<List<String>>() {})
.block();

Supplier<List<String>> protectedCall =
CircuitBreaker.decorateSupplier(breaker, call);

try {
return protectedCall.get();

} catch (Exception e) {
return List.of("bestseller-1", "bestseller-2");
}

Alexander Erben

19

Spring Boot Advanced

Bulkhead Pattern

e Das Bulkhead-Pattern sorgt
dafiir, dass Fehler oder Uberlast
lokal bleiben.

e Statt alle Anfragen Uber einen
gemeinsamen Thread-Pool
laufen zu lassen, isolieren wir
kritische Pfade in eigene

Clients

Ressourcenpools.

e S0 verhindert man, dass etwa
ein Uberlasteter Report-Service
das gesamte System blockiert.

Alexander Erben

—Aufruf=—p»

API Service

—Login (leichtgewichtig)?|

~Report (schwergewichtig)

/

Login Endpoint
Semaphore-Bulkhead
max concurrent calls: 20

Report Endpoint
Thread-Pool-Bulkhead
core: 5, max: 10, queue: 20

Uberlast in Reports blockiert Login nicht

- isolierte Pools (Bulkheads)

Resilience4j Bulkhead-Konfiguration

steuert separate Limits pro Funktionseinheit

20

Spring Boot Advanced

Beispiel: ReportService

1. ReportService erzeugt viele rechenintensive Reports
2. Der globale Thread-Pool ist komplett belegt
3. Der Login hangt, obwonhl er eigentlich sehr schnell ware

4. Das gesamte System wirkt "kaputt" — obwohl nur ein Teilbereich Uberlastet ist

Alexander Erben

21

Spring Boot Advanced

LOosung: Dedizierte Thread-Pools oder Semaphoren

Mit Bulkheads definieren wir pro Funktionseinheit eigene Limits:

e 7.B. 10 Threads fiir Reports
e z.B. 20 gleichzeitige Aufrufe fur Login

e Fehlschlage bleiben isoliert — der Rest bleibt stabil

Alexander Erben

22

Spring Boot Advanced

Thread-Bulkheads

resilience4j:
thread-pool-bulkhead:
reportService:
core-thread-pool-size: 5
max-thread-pool-size: 10
gueue-capacity: 20

@Service
public class ReportClient {

@Bulkhead(name = "reportService", type = Bulkhead.Type.THREADPOOL)
@CircuitBreaker(name = '"reportService")

public CompletableFuture<String> generateReport() {
return CompletableFuture.supplyAsync(() -> {
heavyComputation(); return "OK";
1)

Alexander Erben 23

Spring Boot Advanced

Semaphore-Bulkhead

resilience4j:
bulkhead:
loginService:
max-concurrent-calls: 20

@Service
public class LoginClient {

@Bulkhead(name = "loginService'", type = Bulkhead.Type.SEMAPHORE)

public UserInfo login(String user, String password) {
return authApi.login(user, password);
}

Alexander Erben

24

Spring Boot Advanced

Infrastructure Patterns

Alexander Erben

25

Spring Boot Advanced

API Gateway

e Ein APl Gateway bundelt Zugriffe auf viele Microservices und stellt fur Clients eine
einheitliche, stabile Schnittstelle bereit.

e Statt 20-50 Services einzeln anzusprechen, kommunizieren Browser oder Mobile
Apps nur noch mit einem Entry Point.

Alexander Erben

26

Spring Boot Advanced

Aufgaben eines Gateways

e Routing: Requests werden an interne Services weitergeleitet:

/api/users — user-service:38080

o Aggregation: Mehrere Serviceantworten kdnnen in einem einzigen Response kombiniert
werden.
— Reduziert Netzwerkroundtrips ftr Clients.

o Offloading: Zentrale Cross-Cutting-Aufgaben:
o Authentifizierung & Autorisierung (OAuth2, JWT)

o Rate Limiting & API-Keys
o SSL/TLS Termination
o Caching
e Tools: Spring Cloud Gateway, NGINX, Kong, Ambassador, Istio (Ingress Gateway)

Alexander Erben

27

Spring Boot Advanced

Alexander Erben

Clients
(Browser / Mobile

App)

Service Discovery
(Eureka / Consul / K8s DNS)

A

1
Service Lookup
1
1
1

Einzider API Gateway
Entry goim—b (Spring Cloud Gateway / NGINX
/ Kong)

Cross-Cutting im Gateway :
Auth (OAuth2/JWT),
Rate Limiting, API-Keys,
TLS-Termination,
Caching, Logging

-
. User-Service
(Routing= Japilusers/**
(S
4
. Order-Service
D _>
Routing /api/orders/**
A
Aggregation moglich
(mehrere Aufrufe — Recommendation-Service
1 Response) lapilrecommend/**

28

Spring Boot Advanced

Beispiel: Routing in Spring Cloud Gateway
application.yaml

spring:
cloud:
gateway:
routes:
- 1d: user-service
uri: http://user-service
predicates:
- Path=/api/users/**
filters:
- StripPrefix=1

Alexander Erben

29

Spring Boot Advanced

GatewayConfig.java

@Configuration
public class GatewayConfig {

@Bean
public RoutelLocator routes(RouteLocatorBuilder builder) {
return builder.routes()
.route("recommendations", r ->r
.path("/api/recommend/**")
filters(f -> f.stripPrefix(1))
uri("http://recommendation-service"))
.build();

Alexander Erben

30

Spring Boot Advanced

Service Discovery - Wie Services sich finden

e In einer dynamischen Umgebung wie Kubernetes, Cloud oder VMs andern sich IP-
Adressen und Ports standig.

e Service Discovery stellt sicher, dass Services einander zuverlassig finden, ohne
dass Konfigurationen manuell gedndert werden mussen.

Alexander Erben

31

Spring Boot Advanced

Zwel Grundmodelle

e Client-Side Discovery: Der Client fragt eine Registry ab (z. B. Netflix Eureka)
und entscheidet selbst, welchen Service-Node er ansteuert.

o Ablauf: Client — Registry — (Liste der Instanzen) — direkter Aufruf der
Instanz
o Frameworks: Eureka, Consul, Zookeeper
e Server-Side Discovery: Der Client ruft einen stabilen Endpoint an (z. B.
LoadBalancer, Ingress oder Kubernetes DNS).
Der LoadBalancer entscheidet, wohin die Anfrage genht.
o Ablauf: Client - LB/Router — Service-Instance
o Beispiele: Kubernetes Service DNS, AWS ALB, Envoy

Alexander Erben

32

Spring Boot Advanced

Beispiel: Spring Boot mit Eureka (Client-Side)
application.yml :

eureka:
client:
service-url:
defaultzZone: http://eureka:8761/eureka/
spring:
application:
name: payment-service

Alexander Erben

33

Spring Boot Advanced

OrderClient.java

@Service
public class OrderClient {

private final RestTemplate rest;
public OrderClient(RestTemplate rest) {

this.rest = rest;
}

public Order getOrder(String id) {
return rest.getForObject("http://order-service/orders/" + id, Order.class);

b
}
@Configuration
class RestTemplateConfig {
@Bean
@LoadBalanced
RestTemplate restTemplate(RestTemplateBuilder builder) {
return builder.build();
b
}

Alexander Erben

34

Spring Boot Advanced

Externalized Configuration — Konfiguration gehort nicht ins
Image

Eine Microservice-Architektur folgt dem Prinzip:
Konfiguration wird zur Laufzeit bereitgestellt — nicht in den Build eingebacken.

Das ermdglicht:

e verschiedene Umgebungen (dev / test / prod) ohne Neu-Build
e schnelle Konfigurationsédnderungen

e bessere Sicherheit (z. B. Secrets nicht im Git-Repo)

Alexander Erben

35

Spring Boot Advanced

Typische Quellen fur externe Config

e Spring Cloud Config: Zentraler Config-Server, der Konfiguration aus Git oder
Vault ausliefert.

e Kubernetes Plattform-Mechanismen

o ConfigMaps — nicht-sensible Konfiguration
o Secrets — sensible Daten (Passwarter, Tokens)
o Environment Variables

o Volume Mounts

Alexander Erben

36

Spring Boot Advanced

Beispiel: Spring Cloud Config
bootstrap.yml :

spring:
application:
name: product-service
cloud:
config:
uri: http://config-server:8888

Der Config-Server unterstitzt wiederum verschiedene Backends, beispielsweise git.
Dazu spater mehr!

Alexander Erben

37

