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In diesem Modul

e Monolith vs. Microservices & DDD-Grundlagen
e Datenhaltung in Microservices (Database per Service, CAP, Eventual Consistency)
e Resilience Patterns: Circuit Breaker, Bulkhead (+ Demo)

e Infrastruktur: APl Gateway, Service Discovery, Externalized Configuration
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Wiederholung: Monolith vs. Microservices

Es geht nicht nur um die Grol3e der Services (Micro), sondern um Unabhangigkeit.

e Monolith: Eine Deployment-Unit, geteilter State, interne Methodenaufrufe.
o Pro: Einfaches Refactoring, ACID-Transaktionen, zu Beginn einfaches
Deployment.

o Con: Scaling nur als Ganzes, Technologie-Lock-in, "Big Ball of Mud".

e Microservices: Unabhangig deploybare Services, Kommunikation tiber Netzwerk.
o Pro: Unabhangiges Scaling, Tech-Stack Freiheit, Isolation von Fehlern.

o Con: Verteilte Komplexitat, Netzwerk-Latenz, Eventual Consistency
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Domain Driven Design (DDD)

e Ohne sauberen Schnitt der Fachlichkeit enden Microservices im Chaos
("Distributed Monolith"). DDD ist das Werkzeug fur diesen Schnitt.

e Die wichtigste Erkenntnis in DDD: Es gibt kein einheitliches Datenmodell fir
das gesamte Unternehmen.

 Bounded Context:
Eine explizite Grenze, innerhalb derer ein bestimmtes Modell gltig ist.
e Ubiquitous Language:

Eine gemeinsame, unmissverstandliche Sprache zwischen Entwicklern und
Fachexperten innerhalb dieses Kontexts.
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Beispiel: Polysemie (Mehrdeutigkeit)

Der Begriff "Produkt"” bedeutet je nach Abteilung etwas voéllig anderes:

Bounded Context: Sales / Shop Bounded Context: Fulfillment
Product Product (Consignment)
- title: String - weight: double
- description: String - dimensions: Dim3D
- price: Money - warehouseLocation: String
- category: Enum - stockLevel: int

Context Mapping
(Anti-Corruption Layer)

Customer Recipient
- email: String - shippingAddress: Address
- preferences: List - deliverylnstructions: String
- cart: ShoppingCart - signatureRequired: boolean

Ubiquitous Language:
Begriffe sind nur INNERHALB
der Grenze eindeutig!
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Beispiel: Polysemie (Mehrdeutigkeit)

e Sales: Braucht Preis, Bilder, SEO-Texte.
e Fulfillment: Braucht Gewicht, Lagerplatz, Gefahrgutklasse. Preis ist hier egal.

e Fazit: Wir bauen keine riesige Product -Klasse mit 200 Feldern, sondern zwei
getrennte Services ( SalesService , ShippingService ) mit eigenen Modellen.
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Context Mapping: Wie kommunizieren die Grenzen?

Wenn Service A mit Service B redet, mussen wir die Beziehung definieren.

 Shared Kernel: Beide teilen sich eine Library. Vorsicht: hohe Kopplung.

e Customer |/ Supplier: Ein Team (Supplier) liefert, was das andere (Customer)
braucht.
o Anti-Corruption Layer (ACL):
o Service B will sein sauberes Modell nicht durch das "schmutzige" oder fremde
Modell von A verunreinigen.
o Er baut eine Adapter-Schicht, die Anfragen von A Ubersetzt.
o Essentiell bei Integration von Legacy-Systemen!

e Open Host Service: Ein Service bietet eine offentliche, standardisierte API (z.B.
REST/Swagger) fur alle an.
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Datenverwaltung in Microservice-Architekturen
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Database per Service

Eine der wichtigsten Regel in Microservice-Architekturen: Ein Service darf niemals
direkt auf die Datenbank eines anderen Services zugreifen.

e Warum?
Entkopplung. Wenn Service A das Schema andert, darf Service B nicht brechen.

 Herausforderung: Wie joine ich Daten?
o LOsung 1: APl Composition (Gateway/Aggregator ruft beide auf).

o Losung 2: Data Replication / Caching (Service B speichert eine Kopie der
notwendigen Daten von A via Events).
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CAP Theorem & Eventual Consistency

In verteilten Systemen missen wir uns entscheiden (Pick two):

1. Consistency (Alle sehen die gleichen Daten zur gleichen Zeit).

2. Availability (Das System antwortet immer).

3. Partition Tolerance (Das System lauft weiter, auch wenn das Netzwerk bricht).
Da Netzwerke brechen werden (P), missen wir zwischen C und A wahlen.

Microservices wahlen meist AP (Availability) und akzeptieren Eventual Consistency
(Daten sind "irgendwann" konsistent).
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Verteilte Transaktionen in Spring Boot

e Spring Boot unterstitzt JTA (Java Transaction API) und damit XA-Transaktionen
(z.B. mit spring-boot-starter-jta-atomikos ).

e Dies ermdglicht die Koordination von Transaktionen tber mehrere XA-kompatible
Ressourcen (z.B. zwei Datenbanken, oder eine Datenbank und einen JMS-
Broker) hinweg.

e |In Microservice-Architekturen ist dies aber nicht von Vortell.
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JTAIXA ist nicht gut fur Microservices geeignet

1. REST ist zustandslos: Der Transaktionskontext misste in Requests mit Headern
propagiert werden. Dies widerspricht aber der Zustandslosigkeit von REST. Jeder
Service agiert mit seinen eigenen Ressourcen in lokalen Transaktionen.

2. Blocking & Availability: XA erfordert, dass alle beteiligten Ressourcen bis zum
Commit oder Rollback gesperrt bleiben. In einem System mit vielen, tber HTTP
gekoppelten Services wirde dies zu massiven Performance- und
Verfligbarkeitsproblemen flihren (Verstol3d gegen das CAP-Theorem zugunsten von

strikter Konsistenz).

3. Fehlende Protokoll-Unterstitzung: Es gibt kein standardisiertes, weit
verbreitetes Protokoll, um XA-Transaktionen Uber HTTP/REST-Servicegrenzen
hinweg zu propagieren.
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Alternative zu XA: Das Saga Pattern

o JTA/XA st flr eng gekoppelte Systeme gedacht, nicht fiir Microservices.

e Die Alternative: Sagas — eine Folge von lokalen Transaktionen mit Kompensationslogik.
Zwei Ansatze

Ansatz Beschreibung Pro/Con
Choreography Services reagieren auf Events Lose Kopplung, aber unubersichtlich

Orchestration Zentraler Koordinator steuert Klarer Ablauf, aber "Gott-Service"-Gefahr

Bl Detaillierte Behandlung von Saga, Outbox Pattern und Idempotenz — siehe Modul Messaging
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Resilience & Stability Patterns
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Circuit Breaker

e Der Circuit Breaker schutzt das Gesamtsystem vor kaskadierenden Fehlern.

e \Wenn ein Zielservice nicht erreichbar ist oder zu viele Fehler produziert, werden
Aufrufe nicht mehr ausgefuhrt, sondern sofort abgewiesen (Fail Fast).

e Das verhindert Timeout-Kaskaden und bewahrt freie Ressourcen.
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Zustande

e Closed: Normalbetrieb, Fehler
werden beobachtet.

e Open: Fehlerschwelle
Uberschritten — neue Requests
sofort ablehnen.

e Half-Open: Testphase: Einige
Requests werden
durchgelassen, um zu prifen, ob
der Service wieder gesund ist.
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Circuit Breaker mit Spring: Annotationsbasiert

@Service
public class RecommendationClient {

private final WebClient client = WebClient.create("http://recommendation-service");

@CircuitBreaker(name = '"recommendations'", fallbackMethod = "fallback")
public List<String> getRecommendations(String productId) {
return client.get()
.uri("/recommend/{id}", productId)
.retrieve()
.bodyToMono(new ParameterizedTypeReference<List<String>>() {})
.block();

}

private List<String> fallback(String productId, Throwable t) {
return List.of("bestseller-1", "bestseller-2"),
}
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Circuit Breaker: Programmatisch

CircuiltBreaker breaker = circuitBreakerRegistry.circuitBreaker('"recommendations");

Supplier<List<String>> call = () -> client.get()
.uri("/recommend/{id}", productId)
.retrieve()

.bodyToMono(new ParameterizedTypeReference<List<String>>() {})
.block();

Supplier<List<String>> protectedCall =
CircuitBreaker.decorateSupplier(breaker, call);

try {
return protectedCall.get();

} catch (Exception e) {
return List.of("bestseller-1", "bestseller-2");
}
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Bulkhead Pattern

e Das Bulkhead-Pattern sorgt
dafiir, dass Fehler oder Uberlast
lokal bleiben.

e Statt alle Anfragen Uber einen
gemeinsamen Thread-Pool
laufen zu lassen, isolieren wir
kritische Pfade in eigene

Clients

Ressourcenpools.

e S0 verhindert man, dass etwa
ein Uberlasteter Report-Service
das gesamte System blockiert.
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Beispiel: ReportService

1. ReportService erzeugt viele rechenintensive Reports
2. Der globale Thread-Pool ist komplett belegt
3. Der Login hangt, obwonhl er eigentlich sehr schnell ware

4. Das gesamte System wirkt "kaputt" — obwohl nur ein Teilbereich Uberlastet ist

Alexander Erben
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LOosung: Dedizierte Thread-Pools oder Semaphoren

Mit Bulkheads definieren wir pro Funktionseinheit eigene Limits:

e 7.B. 10 Threads fiir Reports
e z.B. 20 gleichzeitige Aufrufe fur Login

e Fehlschlage bleiben isoliert — der Rest bleibt stabil

Alexander Erben
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Thread-Bulkheads

resilience4j:
thread-pool-bulkhead:
reportService:
core-thread-pool-size: 5
max-thread-pool-size: 10
gueue-capacity: 20

@Service
public class ReportClient {

@Bulkhead(name = "reportService", type = Bulkhead.Type.THREADPOOL)
@CircuitBreaker(name = '"reportService")

public CompletableFuture<String> generateReport() {
return CompletableFuture.supplyAsync(() -> {
heavyComputation(); return "OK";
1)
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Semaphore-Bulkhead

resilience4j:
bulkhead:
loginService:
max-concurrent-calls: 20

@Service
public class LoginClient {

@Bulkhead(name = "loginService'", type = Bulkhead.Type.SEMAPHORE)

public UserInfo login(String user, String password) {
return authApi.login(user, password);
}
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24



Spring Boot Advanced

Infrastructure Patterns

Alexander Erben
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API Gateway

e Ein APl Gateway bundelt Zugriffe auf viele Microservices und stellt fur Clients eine
einheitliche, stabile Schnittstelle bereit.

e Statt 20-50 Services einzeln anzusprechen, kommunizieren Browser oder Mobile
Apps nur noch mit einem Entry Point.
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Aufgaben eines Gateways

e Routing: Requests werden an interne Services weitergeleitet:

/api/users — user-service:38080

o Aggregation: Mehrere Serviceantworten kdnnen in einem einzigen Response kombiniert
werden.
— Reduziert Netzwerkroundtrips ftr Clients.

o Offloading: Zentrale Cross-Cutting-Aufgaben:
o Authentifizierung & Autorisierung (OAuth2, JWT)

o Rate Limiting & API-Keys
o SSL/TLS Termination
o Caching
e Tools: Spring Cloud Gateway, NGINX, Kong, Ambassador, Istio (Ingress Gateway)

Alexander Erben
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Beispiel: Routing in Spring Cloud Gateway
application.yaml

spring:
cloud:
gateway:
routes:
- 1d: user-service
uri: http://user-service
predicates:
- Path=/api/users/**
filters:
- StripPrefix=1

Alexander Erben
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GatewayConfig.java

@Configuration
public class GatewayConfig {

@Bean
public RoutelLocator routes(RouteLocatorBuilder builder) {
return builder.routes()
.route("recommendations", r ->r
.path("/api/recommend/**")
filters(f -> f.stripPrefix(1))
uri("http://recommendation-service"))
.build();

Alexander Erben
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Service Discovery - Wie Services sich finden

e In einer dynamischen Umgebung wie Kubernetes, Cloud oder VMs andern sich IP-
Adressen und Ports standig.

e Service Discovery stellt sicher, dass Services einander zuverlassig finden, ohne
dass Konfigurationen manuell gedndert werden mussen.
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Zwel Grundmodelle

e Client-Side Discovery: Der Client fragt eine Registry ab (z. B. Netflix Eureka)
und entscheidet selbst, welchen Service-Node er ansteuert.

o Ablauf: Client — Registry — (Liste der Instanzen) — direkter Aufruf der
Instanz
o Frameworks: Eureka, Consul, Zookeeper
e Server-Side Discovery: Der Client ruft einen stabilen Endpoint an (z. B.
LoadBalancer, Ingress oder Kubernetes DNS).
Der LoadBalancer entscheidet, wohin die Anfrage genht.
o Ablauf: Client - LB/Router — Service-Instance
o Beispiele: Kubernetes Service DNS, AWS ALB, Envoy
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Beispiel: Spring Boot mit Eureka (Client-Side)
application.yml :

eureka:
client:
service-url:
defaultzZone: http://eureka:8761/eureka/
spring:
application:
name: payment-service

Alexander Erben
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OrderClient.java

@Service
public class OrderClient {

private final RestTemplate rest;
public OrderClient(RestTemplate rest) {

this.rest = rest;
}

public Order getOrder(String id) {
return rest.getForObject("http://order-service/orders/" + id, Order.class);

b
}
@Configuration
class RestTemplateConfig {
@Bean
@LoadBalanced
RestTemplate restTemplate(RestTemplateBuilder builder) {
return builder.build();
b
}

Alexander Erben
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Externalized Configuration — Konfiguration gehort nicht ins
Image

Eine Microservice-Architektur folgt dem Prinzip:
Konfiguration wird zur Laufzeit bereitgestellt — nicht in den Build eingebacken.

Das ermdglicht:

e verschiedene Umgebungen (dev / test / prod) ohne Neu-Build
e schnelle Konfigurationsédnderungen

e bessere Sicherheit (z. B. Secrets nicht im Git-Repo)

Alexander Erben
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Typische Quellen fur externe Config

e Spring Cloud Config: Zentraler Config-Server, der Konfiguration aus Git oder
Vault ausliefert.

e Kubernetes Plattform-Mechanismen

o ConfigMaps — nicht-sensible Konfiguration
o Secrets — sensible Daten (Passwarter, Tokens)
o Environment Variables

o Volume Mounts

Alexander Erben
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Beispiel: Spring Cloud Config
bootstrap.yml :

spring:
application:
name: product-service
cloud:
config:
uri: http://config-server:8888

Der Config-Server unterstitzt wiederum verschiedene Backends, beispielsweise git.
Dazu spater mehr!
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