
Microservice-Architektur & Distributed Patterns

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Monolith vs. Microservices & DDD-Grundlagen

Datenhaltung in Microservices (Database per Service, CAP, Eventual Consistency)

Resilience Patterns: Circuit Breaker, Bulkhead (+ Demo)

Infrastruktur: API Gateway, Service Discovery, Externalized Configuration

Spring Boot Advanced

Alexander Erben 2

Wiederholung: Monolith vs. Microservices

Es geht nicht nur um die Größe der Services (Micro), sondern um Unabhängigkeit.

Monolith: Eine Deployment-Unit, geteilter State, interne Methodenaufrufe.
Pro: Einfaches Refactoring, ACID-Transaktionen, zu Beginn einfaches

Deployment.

Con: Scaling nur als Ganzes, Technologie-Lock-in, "Big Ball of Mud".

Microservices: Unabhängig deploybare Services, Kommunikation über Netzwerk.

Pro: Unabhängiges Scaling, Tech-Stack Freiheit, Isolation von Fehlern.

Con: Verteilte Komplexität, Netzwerk-Latenz, Eventual Consistency

Spring Boot Advanced

Alexander Erben 3

Monolith Architecture

Client

Load Balancer

Monolithic App
(UI + Business + Data)

Shared
DB

Microservices Architecture

Client

API Gateway

Order Svc

Order
DB

Inventory Svc

Inv DB

User Svc

User DB

Spring Boot Advanced

Alexander Erben 4

Domain Driven Design (DDD)

Ohne sauberen Schnitt der Fachlichkeit enden Microservices im Chaos
("Distributed Monolith"). DDD ist das Werkzeug für diesen Schnitt.

Die wichtigste Erkenntnis in DDD: Es gibt kein einheitliches Datenmodell für
das gesamte Unternehmen.

Bounded Context:
Eine explizite Grenze, innerhalb derer ein bestimmtes Modell gültig ist.

Ubiquitous Language:
Eine gemeinsame, unmissverständliche Sprache zwischen Entwicklern und
Fachexperten innerhalb dieses Kontexts.

Spring Boot Advanced

Alexander Erben 5

Beispiel: Polysemie (Mehrdeutigkeit)

Der Begriff "Produkt" bedeutet je nach Abteilung etwas völlig anderes:

Bounded Context: Sales / Shop

Product

- title: String
- description: String
- price: Money
- category: Enum

Customer

- email: String
- preferences: List
- cart: ShoppingCart

Bounded Context: Fulfillment

Product (Consignment)

- weight: double
- dimensions: Dim3D
- warehouseLocation: String
- stockLevel: int

Recipient

- shippingAddress: Address
- deliveryInstructions: String
- signatureRequired: boolean

Context Mapping
(Anti-Corruption Layer)

Ubiquitous Language:
Begriffe sind nur INNERHALB

der Grenze eindeutig!

Spring Boot Advanced

Alexander Erben 6

Beispiel: Polysemie (Mehrdeutigkeit)

Sales: Braucht Preis, Bilder, SEO-Texte.

Fulfillment: Braucht Gewicht, Lagerplatz, Gefahrgutklasse. Preis ist hier egal.

Fazit: Wir bauen keine riesige Product -Klasse mit 200 Feldern, sondern zwei

getrennte Services (SalesService , ShippingService) mit eigenen Modellen.

Spring Boot Advanced

Alexander Erben 7

Context Mapping: Wie kommunizieren die Grenzen?

Wenn Service A mit Service B redet, müssen wir die Beziehung definieren.

Shared Kernel: Beide teilen sich eine Library. Vorsicht: hohe Kopplung.

Customer / Supplier: Ein Team (Supplier) liefert, was das andere (Customer)

braucht.

Anti-Corruption Layer (ACL):
Service B will sein sauberes Modell nicht durch das "schmutzige" oder fremde
Modell von A verunreinigen.

Er baut eine Adapter-Schicht, die Anfragen von A übersetzt.

Essentiell bei Integration von Legacy-Systemen!

Open Host Service: Ein Service bietet eine öffentliche, standardisierte API (z.B.
REST/Swagger) für alle an.

Spring Boot Advanced

Alexander Erben 8

Datenverwaltung in Microservice-Architekturen

Spring Boot Advanced

Alexander Erben 9

Database per Service

Eine der wichtigsten Regel in Microservice-Architekturen: Ein Service darf niemals
direkt auf die Datenbank eines anderen Services zugreifen.

Warum?
Entkopplung. Wenn Service A das Schema ändert, darf Service B nicht brechen.

Herausforderung: Wie joine ich Daten?

Lösung 1: API Composition (Gateway/Aggregator ruft beide auf).

Lösung 2: Data Replication / Caching (Service B speichert eine Kopie der

notwendigen Daten von A via Events).

Spring Boot Advanced

Alexander Erben 10

CAP Theorem & Eventual Consistency

In verteilten Systemen müssen wir uns entscheiden (Pick two):

1. Consistency (Alle sehen die gleichen Daten zur gleichen Zeit).

2. Availability (Das System antwortet immer).

3. Partition Tolerance (Das System läuft weiter, auch wenn das Netzwerk bricht).

Da Netzwerke brechen werden (P), müssen wir zwischen C und A wählen.

Microservices wählen meist AP (Availability) und akzeptieren Eventual Consistency
(Daten sind "irgendwann" konsistent).

Spring Boot Advanced

Alexander Erben 11

Verteilte Transaktionen in Spring Boot

Spring Boot unterstützt JTA (Java Transaction API) und damit XA-Transaktionen
(z.B. mit spring-boot-starter-jta-atomikos).

Dies ermöglicht die Koordination von Transaktionen über mehrere XA-kompatible
Ressourcen (z.B. zwei Datenbanken, oder eine Datenbank und einen JMS-

Broker) hinweg.

In Microservice-Architekturen ist dies aber nicht von Vorteil.

Spring Boot Advanced

Alexander Erben 12

JTA/XA ist nicht gut für Microservices geeignet

1. REST ist zustandslos: Der Transaktionskontext müsste in Requests mit Headern
propagiert werden. Dies widerspricht aber der Zustandslosigkeit von REST. Jeder

Service agiert mit seinen eigenen Ressourcen in lokalen Transaktionen.

2. Blocking & Availability: XA erfordert, dass alle beteiligten Ressourcen bis zum
Commit oder Rollback gesperrt bleiben. In einem System mit vielen, über HTTP

gekoppelten Services würde dies zu massiven Performance- und
Verfügbarkeitsproblemen führen (Verstoß gegen das CAP-Theorem zugunsten von

strikter Konsistenz).

3. Fehlende Protokoll-Unterstützung: Es gibt kein standardisiertes, weit

verbreitetes Protokoll, um XA-Transaktionen über HTTP/REST-Servicegrenzen
hinweg zu propagieren.

Spring Boot Advanced

Alexander Erben 13

Alternative zu XA: Das Saga Pattern

JTA/XA ist für eng gekoppelte Systeme gedacht, nicht für Microservices.

Die Alternative: Sagas – eine Folge von lokalen Transaktionen mit Kompensationslogik.

Zwei Ansätze

Ansatz Beschreibung Pro/Con

Choreography Services reagieren auf Events Lose Kopplung, aber unübersichtlich

Orchestration Zentraler Koordinator steuert Klarer Ablauf, aber "Gott-Service"-Gefahr

 Detaillierte Behandlung von Saga, Outbox Pattern und Idempotenz → siehe Modul Messaging

Spring Boot Advanced

Alexander Erben 14

Resilience & Stability Patterns

Spring Boot Advanced

Alexander Erben 15

Circuit Breaker

Der Circuit Breaker schützt das Gesamtsystem vor kaskadierenden Fehlern.

Wenn ein Zielservice nicht erreichbar ist oder zu viele Fehler produziert, werden
Aufrufe nicht mehr ausgeführt, sondern sofort abgewiesen (Fail Fast).

Das verhindert Timeout-Kaskaden und bewahrt freie Ressourcen.

Spring Boot Advanced

Alexander Erben 16

CLOSED
(Normal Operation)

OPEN
(Failing Fast)

HALF-OPEN
(Testing)

Failure Threshold
Exceeded

Reset Timeout
Expired

Test Request
Success

Test Request
Fail

Zustände

Closed: Normalbetrieb, Fehler

werden beobachtet.

Open: Fehlerschwelle

überschritten → neue Requests
sofort ablehnen.

Half-Open: Testphase: Einige

Requests werden
durchgelassen, um zu prüfen, ob

der Service wieder gesund ist.

Spring Boot Advanced

Alexander Erben 17

Circuit Breaker mit Spring: Annotationsbasiert

@Service
public class RecommendationClient {

 private final WebClient client = WebClient.create("http://recommendation-service");

 @CircuitBreaker(name = "recommendations", fallbackMethod = "fallback")
 public List<String> getRecommendations(String productId) {
 return client.get()
 .uri("/recommend/{id}", productId)
 .retrieve()
 .bodyToMono(new ParameterizedTypeReference<List<String>>() {})
 .block();
 }

 private List<String> fallback(String productId, Throwable t) {
 return List.of("bestseller-1", "bestseller-2");
 }
}

Spring Boot Advanced

Alexander Erben 18

Circuit Breaker: Programmatisch

CircuitBreaker breaker = circuitBreakerRegistry.circuitBreaker("recommendations");

Supplier<List<String>> call = () -> client.get()
 .uri("/recommend/{id}", productId)
 .retrieve()
 .bodyToMono(new ParameterizedTypeReference<List<String>>() {})
 .block();

Supplier<List<String>> protectedCall =
 CircuitBreaker.decorateSupplier(breaker, call);

try {
 return protectedCall.get();
} catch (Exception e) {
 return List.of("bestseller-1", "bestseller-2");
}

Spring Boot Advanced

Alexander Erben 19

Clients API Service

Login Endpoint
Semaphore-Bulkhead

max concurrent calls: 20

Report Endpoint
Thread-Pool-Bulkhead

core: 5, max: 10, queue: 20

Aufruf

Login (leichtgewichtig)

Report (schwergewichtig)

Überlast in Reports blockiert Login nicht
→ isolierte Pools (Bulkheads)

Resilience4j Bulkhead-Konfiguration
steuert separate Limits pro Funktionseinheit

Bulkhead Pattern

Das Bulkhead-Pattern sorgt
dafür, dass Fehler oder Überlast

lokal bleiben.

Statt alle Anfragen über einen
gemeinsamen Thread-Pool

laufen zu lassen, isolieren wir
kritische Pfade in eigene

Ressourcenpools.

So verhindert man, dass etwa

ein überlasteter Report-Service
das gesamte System blockiert.

Spring Boot Advanced

Alexander Erben 20

Beispiel: ReportService

1. ReportService erzeugt viele rechenintensive Reports

2. Der globale Thread-Pool ist komplett belegt

3. Der Login hängt, obwohl er eigentlich sehr schnell wäre

4. Das gesamte System wirkt "kaputt" – obwohl nur ein Teilbereich überlastet ist

Spring Boot Advanced

Alexander Erben 21

Lösung: Dedizierte Thread-Pools oder Semaphoren

Mit Bulkheads definieren wir pro Funktionseinheit eigene Limits:

z.B. 10 Threads für Reports

z.B. 20 gleichzeitige Aufrufe für Login

Fehlschläge bleiben isoliert → der Rest bleibt stabil

Spring Boot Advanced

Alexander Erben 22

Thread-Bulkheads

resilience4j:
 thread-pool-bulkhead:
 reportService:
 core-thread-pool-size: 5
 max-thread-pool-size: 10
 queue-capacity: 20

@Service
public class ReportClient {

 @Bulkhead(name = "reportService", type = Bulkhead.Type.THREADPOOL)
 @CircuitBreaker(name = "reportService")
 public CompletableFuture<String> generateReport() {
 return CompletableFuture.supplyAsync(() -> {
 heavyComputation(); return "OK";
 });
 }
}

Spring Boot Advanced

Alexander Erben 23

Semaphore-Bulkhead

resilience4j:
 bulkhead:
 loginService:
 max-concurrent-calls: 20

@Service
public class LoginClient {

 @Bulkhead(name = "loginService", type = Bulkhead.Type.SEMAPHORE)
 public UserInfo login(String user, String password) {
 return authApi.login(user, password);
 }
}

Spring Boot Advanced

Alexander Erben 24

Infrastructure Patterns

Spring Boot Advanced

Alexander Erben 25

API Gateway

Ein API Gateway bündelt Zugriffe auf viele Microservices und stellt für Clients eine
einheitliche, stabile Schnittstelle bereit.

Statt 20–50 Services einzeln anzusprechen, kommunizieren Browser oder Mobile
Apps nur noch mit einem Entry Point.

Spring Boot Advanced

Alexander Erben 26

Aufgaben eines Gateways

Routing: Requests werden an interne Services weitergeleitet:
/api/users → user-service:8080

Aggregation: Mehrere Serviceantworten können in einem einzigen Response kombiniert
werden.

→ Reduziert Netzwerkroundtrips für Clients.

Offloading: Zentrale Cross-Cutting-Aufgaben:

Authentifizierung & Autorisierung (OAuth2, JWT)

Rate Limiting & API-Keys

SSL/TLS Termination

Caching

Tools: Spring Cloud Gateway, NGINX, Kong, Ambassador, Istio (Ingress Gateway)

Spring Boot Advanced

Alexander Erben 27

Clients
(Browser / Mobile

App)

API Gateway
(Spring Cloud Gateway / NGINX

/ Kong)

User-Service
/api/users/**

Order-Service
/api/orders/**

Recommendation-Service
/api/recommend/**

Service Discovery
(Eureka / Consul / K8s DNS)

Einziger
Entry Point

Routing

Routing

Aggregation möglich
(mehrere Aufrufe →

1 Response)

Service Lookup

Cross-Cutting im Gateway :
Auth (OAuth2/JWT),

Rate Limiting, API-Keys,
TLS-Termination,
Caching, Logging

Spring Boot Advanced

Alexander Erben 28

Beispiel: Routing in Spring Cloud Gateway

application.yaml

spring:
 cloud:
 gateway:
 routes:
 - id: user-service
 uri: http://user-service
 predicates:
 - Path=/api/users/**
 filters:
 - StripPrefix=1

Spring Boot Advanced

Alexander Erben 29

GatewayConfig.java

@Configuration
public class GatewayConfig {

 @Bean
 public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("recommendations", r -> r
 .path("/api/recommend/**")
 .filters(f -> f.stripPrefix(1))
 .uri("http://recommendation-service"))
 .build();
 }
}

Spring Boot Advanced

Alexander Erben 30

Service Discovery – Wie Services sich finden

In einer dynamischen Umgebung wie Kubernetes, Cloud oder VMs ändern sich IP-
Adressen und Ports ständig.

Service Discovery stellt sicher, dass Services einander zuverlässig finden, ohne
dass Konfigurationen manuell geändert werden müssen.

Spring Boot Advanced

Alexander Erben 31

Zwei Grundmodelle

Client-Side Discovery: Der Client fragt eine Registry ab (z. B. Netflix Eureka)
und entscheidet selbst, welchen Service-Node er ansteuert.

Ablauf: Client → Registry → (Liste der Instanzen) → direkter Aufruf der
Instanz

Frameworks: Eureka, Consul, Zookeeper

Server-Side Discovery: Der Client ruft einen stabilen Endpoint an (z. B.
LoadBalancer, Ingress oder Kubernetes DNS).

Der LoadBalancer entscheidet, wohin die Anfrage geht.

Ablauf: Client → LB/Router → Service-Instance

Beispiele: Kubernetes Service DNS, AWS ALB, Envoy

Spring Boot Advanced

Alexander Erben 32

Beispiel: Spring Boot mit Eureka (Client-Side)

application.yml :

eureka:
 client:
 service-url:
 defaultZone: http://eureka:8761/eureka/
spring:
 application:
 name: payment-service

Spring Boot Advanced

Alexander Erben 33

OrderClient.java

@Service
public class OrderClient {

 private final RestTemplate rest;

 public OrderClient(RestTemplate rest) {
 this.rest = rest;
 }

 public Order getOrder(String id) {
 return rest.getForObject("http://order-service/orders/" + id, Order.class);
 }
}

@Configuration
class RestTemplateConfig {
 @Bean
 @LoadBalanced
 RestTemplate restTemplate(RestTemplateBuilder builder) {
 return builder.build();
 }
}

Spring Boot Advanced

Alexander Erben 34

Externalized Configuration – Konfiguration gehört nicht ins
Image

Eine Microservice-Architektur folgt dem Prinzip:

Konfiguration wird zur Laufzeit bereitgestellt – nicht in den Build eingebacken.

Das ermöglicht:

verschiedene Umgebungen (dev / test / prod) ohne Neu-Build

schnelle Konfigurationsänderungen

bessere Sicherheit (z. B. Secrets nicht im Git-Repo)

Spring Boot Advanced

Alexander Erben 35

Typische Quellen für externe Config

Spring Cloud Config: Zentraler Config-Server, der Konfiguration aus Git oder

Vault ausliefert.

Kubernetes Plattform-Mechanismen

ConfigMaps → nicht-sensible Konfiguration

Secrets → sensible Daten (Passwörter, Tokens)

Environment Variables

Volume Mounts

Spring Boot Advanced

Alexander Erben 36

Beispiel: Spring Cloud Config

bootstrap.yml :

spring:
 application:
 name: product-service
 cloud:
 config:
 uri: http://config-server:8888

Der Config-Server unterstützt wiederum verschiedene Backends, beispielsweise git.
Dazu später mehr!

Spring Boot Advanced

Alexander Erben 37

