Spring Boot Advanced

Spring Boot Configuration & Internals

Alexander Erben

Spring Boot Advanced

In diesem Modul

Spring Boot AutoConfiguration (+ Deep Dive)

Externalisierte Configuration (+ Demo)

Eigene Starter/Autoconfiguration

@ ConfigurationPropertiesScan vs. @EnableConfigurationProperties

Kubernetes-native Konfiguration (ConfigMaps, Secrets)

Alexander Erben

Spring Boot Advanced

Einflihrung in AutoConfiguration

e Convention over Configuration: Entwickler sollen so wenig wie moglich
konfigurieren mussen.

e Opinionated Defaults: Spring Boot trifft sinnvolle Annahmen basierend auf den
vorhandenen Libraries (Classpath).

e Startzeit-Optimierung: Statt XML-Konfiguration werden Beans dynamisch nur
dann erzeugt, wenn sie wirklich gebraucht werden.

Alexander Erben

Spring Boot Advanced

Wie funktioniert es? (High Level)

Beim Start der Anwendung scannt Spring Boot:

1. Classpath: Ist z.B. H2 in den Dependencies? -> Dann konfiguriere eine H2
DataSource.

2. Existing Beans: Hat der User schon eine eigene DataSource definiert? -> Dann
mache nichts.

3. Properties: Steht in application.properties ein bestimmter Schalter?

Alexander Erben

Spring Boot Advanced

Config Sources & Reihenfolge (Precedence)

Spring Boot liest Konfigurationen aus vielen Quellen. Die wichtigsten (Uberschreibend
von oben nach unten):

1. Devtools global settings (~/.spring-boot-devtools.properties)

2. @TestPropertySource (in Tests)

3. Command line arguments (z.B. --server.port=9000)

4. OS Environment Variables

5. Application Properties (JAR extern)

6. Application Properties (JAR intern)

(Insgesamt gibt es Uber 15 Quellen!)

Alexander Erben

Spring Boot Advanced

Immutable Configuration (@ConstructorBinding)
Der "moderne" Weg fur Type-Safe Configuration (seit Spring Boot 2.2+ / 3.0 verfligbar).

@ConfigurationProperties(prefix = "app.mail")

public record MailProperties(String host, int port, boolean enabled) {
// Records sind automatisch immutable und haben Konstruktoren

}

Aktivierung:
Entweder @EnableConfigurationProperties(MailProperties.class) auf einer
Konfigurationsklasse oder (neu in Boot 2.2) einfach @ConfigurationPropertiesScan .

Alexander Erben

Spring Boot Advanced

Profiles

Spring ladt automatisch Dateien basierend auf dem aktiven Profil:

e application.yml (Immer geladen)
e application-dev.yml (Uberschreibt Werte, wenn Profil dev aktiv)

Man kann Profile blindeln. In application.yml :

spring:
profiles:
group:
production:
- proddb
- cloudmetrics
- k8s

Aktiviert man nun -Dspring.profiles.active=production , werden automatisch proddb ,
cloudmetrics und k8s mitaktiviert.

Alexander Erben

Spring Boot Advanced

Config Server (Git-Backed)

e Trennung von Config und Code: zentrale Git-Repo, Versionierung, Audits.
e Clients ziehen Config pro spring.profiles.active vom Server; kbnnen sie auch zur Laufzeit refreshen.

e Mehrere Apps, gemeinsame Defaults: application.yml , my-service.yml , Profil-Dateien wie my-service-dev.yml .

Server (Spring Cloud Config Server):

spring:
application:
name: config-server
cloud:
config:
server:
git:
uri: https://github.com/example/config-repo
search-paths: config
server:
port: 8888

Starter: spring-cloud-config-server + @EnableConfigServer .

Alexander Erben

Spring Boot Advanced

Client-Anbindung

e Seit Boot 2.4: spring.config.import=optional:configserver:http://localhost:8888
 Client greift beim Start auf /{app-name}/{profile} zu (z.B. /my-service/dev).

application.yml (Client):

spring:
application:
name: my-service
config:

import: "optional:configserver:http://localhost:8888"

In Git-Repo: my-service-dev.yml :

server:
port: 8085

custom:
feature-x-enabled: true

Alexander Erben

Spring Boot Advanced

Verschliisselung von Properties

e Config Server kann Secrets serverseitig entschlisseln.

o Symmetrischer Key im Server (encrypt.key) oder besser KMS/HSM.

application.yml (Server):

encrypt:
key: my-strong-password

Verschliusselung per CLI/Post:

curl -X POST localhost:8888/encrypt -d 'db-pass' — '{cipher}...
Im Git-Repo: password: "{cipher}..."

Client erhalt bereits entschlisselte Werte.

Alexander Erben

10

Spring Boot Advanced

Speichern von Secrets In externen Systemen
Beispiel Spring Cloud Vault (application.yml):

spring:
cloud:
vault:

uri: http://localhost:8200

authentication: token

token: s.1234567890

kv:
enabled: true
backend: secret
application-name: my-service

e Secrets aus secret/my-service werden als Properties verfiigbar, z.B.

secret.datasource.password .

o Empfohlen: Vault-Agent/K8s Auth statt statischem Token; Maskierung sensibler Werte in
Logs/Actuator.

Alexander Erben

11

Spring Boot Advanced

Vault lokal ausfiihren und testen

1. Vault im Dev-Mode starten (lokal, nicht ftr Prod):

vault server -dev -dev-root-token-id=root

2. In neuer Shell den Token setzen:;
export VAULT_ADDR=http://127.0.0.1:8200
export VAULT_TOKEN=root

3. Secret schreiben:

vault kv put secret/my-service datasource.password=superSecret api.key=abc123

4. Spring Boot starten (mit oben gezeigtem application.yml):

./mvnw spring-boot:run oder ./gradlew bootRun
5. Im Code eine Property priufen, z.B. @value("${datasource.password}") .

6. Live andern:
vault kv put secret/my-service datasource.password=newSecret — /actuator/refresh

aufrufen, dann den neuen Wert zeigen.
Alexander Erben 12

Spring Boot Advanced

Vault-Auth im Cluster

In Kubernetes kann man Vault auch im Cluster betreiben.

e Vault Agent + K8s Auth: Pod erhalt ein ServiceAccount-Token, Vault tauscht es
gegen ein kurzlebiges Vault-Token. Secrets landen als Datei/ENV oder werden per
Template gerendert.

e Vortell: Kein statischer Token im Image oder application.yml ; kurzlebige
Tokens, Audit-Log, feingranulare Policies.

Alexander Erben

13

Spring Boot Advanced

Resilienz bei Config-Fehlern

 Fail Fast: Bei Spring Cloud Config ist es im Produktivbetrieb sinnvoll, den Start abbrechen zu lassen,
wenn der Server nicht erreichbar ist (spring.cloud.config.fail-fast=true).

e Fallback: Fiir Dev/Cl oder lokale Demos spring.cloud.config.fail-fast=false +
spring.config.import=optional:configserver:... — App startet mit lokalen Defaults.

e Retry: spring.cloud.config.retry.* aktivieren, damit bei kurzzeitigem Ausfall (Config-Server,
Vault) erneut versucht wird.

e Vault-Ausfall: spring.cloud.vault.fail-fast=false fir lokale Demos, sonst true + Retry;
sensibel loggen, Secrets nicht dumpen.

e Circuit Breaker fiirs Laden (Hinweis): Wenn Config/Secrets tber HTTP APIs nachgeladen werden,
kann ein Resilience4j-CircuitBreaker + Retry/Backoff verhindern, dass Start/Refresh unendlich hangt.

Alexander Erben

14

Spring Boot Advanced

Spring Boot Starter

Alexander Erben

15

Spring Boot Advanced

Ein eigener Starter kapselt wiederkehrende Logik (z.B. Standard-Logging, Security-
Wrapper).

Struktur

Best Practice ist ein Multi-Module Maven/Gradle Projekt:

1. my-feature-autoconfigure : Enthalt den Code und die Config.

2. my-feature-starter : Leer, definiert nur my-feature-autoconfigure als
Dependency.

Alexander Erben

16

Spring Boot Advanced

@Conditional Anhnotationen

Bedingte Ausflhrung sind das Zentrum der Auto-Konfiguration.

e @ConditionalonClass(name = "com.example.Service") : Nur wenn Klasse im

Classpath.

e @ConditionalonMissingBean : Nur wenn der User keine eigene Bean dieses Typs
gebaut hat.

e @ConditionalOnProperty(prefix = "app", name = "enabled", havingValue =

"true") : Nur wenn Property gesetzt.

e (@ConditionalOnwebApplication : Nur wenn es eine Web-App ist.

Alexander Erben 17

Spring Boot Advanced

Beispiel: AutoConfiguration Klasse

@AutoConfiguration // Alias fur @Configuration in Boot 2.7+
@ConditionalOnClass(AuditService.class)
@EnableConfigurationProperties(AuditProperties.class)
public class AuditAutoConfiguration {

@Bean

@ConditionalOnMissingBean

public AuditService auditService(AuditProperties props) {
return new AuditService(props.geturl());

}

META-INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports

com.mycompany.audit.AuditAutoConfiguration

Alexander Erben

18

Spring Boot Advanced

Boot Internals: EnvironmentPostProcessor

Wenn man in den Startprozess eingreifen muss, bevor der ApplicationContext erstellt wird (z.B. um
custom Config-Dateien zu laden oder sensitive Properties zu entschllsseln).

public class MyEnvPostProcessor implements EnvironmentPostProcessor {
@Override
public void postProcessEnvironment(ConfigurableEnvironment environment,
SpringApplication application) {
// Logik hier, z.B. PropertySources hinzuflgen
Map<String, Object> map = new HashMap<>();
map.put("extra.property", "value");
environment.getPropertySources()
.addLast(new MapPropertySource("myExtra", map));

Registrierung in META-

INF/spring/org.springframework.boot.env.EnvironmentPostProcessor.imports .

Alexander Erben

19

Spring Boot Advanced

Failure Analyzers

Eigene Fehlermeldungen beim Absturz direkt nach dem Start.

public class PortInUseFailureAnalyzer
extends AbstractFailureAnalyzer<PortInUseException> {

@Override
protected FailureAnalysis analyze(Throwable rootFailure,
PortInUseException cause) {
return new FailureAnalysis(
"Port " + cause.getPort() + " 1is already in use.",
"Please 1dentify and stop the process or change the port.",
cause);

Dies verwandelt einen Stacktrace in eine besser lesbare Fehlermeldung in der
Konsole.

Alexander Erben

20

Spring Boot Advanced

Configuration Properties: Scan vs. Enable

Alexander Erben

21

Spring Boot Advanced

@ConfigurationPropertiesScan vs.
@EnableConfigurationProperties

Zwei Wege, um @cConfigurationProperties -Klassen zu aktivieren:

Annotation Verwendung

Explizit einzelne Klassen

@EnableConfigurationProperties(MyProps.class) o
reg|str|eren

Automatisch alle im Package

@ConfigurationPropertiesScan
sCcannen

Alexander Erben

22

Spring Boot Advanced

@EnableConfigurationProperties

Explizite Registrierung — volle Kontrolle, aber mehr Bollerplate.

@Configuration

@EnableConfigurationProperties({
MailProperties.class,
StorageProperties.class

1)
public class AppConfig {

// Jede neue Properties-Klasse muss hier hinzugefligt werden
b

Vorteil: Klar ersichtlich, welche Properties aktiv sind.
Nachteil: Vergisst man eine Klasse, wird sie nicht gebunden.

Alexander Erben

23

Spring Boot Advanced

@ConfigurationPropertiesScan

Automatisches Scanning — weniger Boilerplate, wie @ComponentScan .

@SpringBootApplication
@ConfigurationPropertiesScan('"com.example.config")
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
¥

Vorteil: Neue Properties-Klassen werden automatisch erkannt.
Nachteil: Weniger explizit; kann unerwartete Beans erzeugen.

Alexander Erben

24

Spring Boot Advanced

Empfehlung

Szenario
Kleine Anwendung, wenige Props
Library / Starter
Strikte Kontrolle erforderlich

Viele Properties-Klassen

Alexander Erben

Empfehlung
@ConfigurationPropertiesScan
@EnableConfigurationProperties (explizit)
@EnableConfigurationProperties

@ConfigurationPropertiesScan

25

Spring Boot Advanced

Kubernetes-native Konfiguration

Alexander Erben

26

Spring Boot Advanced

Ruckblick: Externalized Configuration

Wir haben bereits Spring Cloud Config und Vault als externe Konfigurationsquellen
kennengelernt.

In Kubernetes-Umgebungen gibt es eine native Alternative: ConfigMaps und Secrets
direkt importieren — ohne zusatzliche Infrastruktur wie Config Server.

Alexander Erben

27

Spring Boot Advanced

spring.config.import flir Kubernetes

Seit Spring Boot 2.4+ konnen ConfigMaps und Secrets direkt importiert werden — ohne
Spring Cloud Kubernetes.
spring:
config:

import:
- "optional:configtree:/etc/config/"

configtree: Liest Dateien aus einem Verzeichnis als Properties.
Jede Datei wird zum Property-Namen, der Inhalt zum Wert.

Alexander Erben

28

Spring Boot Advanced

Kubernetes Volume Mount

Kubernetes Deployment

spec:
containers:
- name: app
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
name: my-app-config
ConfigMap:

apiVersion: vi

kind: ConfigMap

metadata:
name: my-app-config

data:
database.url: "jdbc:postgresql://db:5432/mydb"
cache.enabled: "true"

Alexander Erben

29

Spring Boot Advanced

Resultat im Spring Boot

Die Dateien unter /etc/config/ werden zu Properties:

Datei Property
/etc/config/database.url database.url

/etc/config/cache.enabled cache.enabled

@value("${database.url}")
private String dburl; // "jdbc:postgresql://db:5432/mydb"

Alexander Erben

30

Spring Boot Advanced

Secrets als Config importieren
Fur sensible Daten funktioniert es identisch mit Kubernetes Secrets:

spring:
config:
import:
- "optional:configtree:/etc/secrets/"

Kubernetes Secret (base64-encoded)
apiVersion: vi
kind: Secret
metadata:
name: db-credentials
data:

spring.datasource.password: c3VwzZXJTZWNyZXQ= # '"superSecret"

Vorteil: Keine zuséatzlichen Dependencies, nativer Kubernetes-Support.

Alexander Erben

31

