
Spring Boot Configuration & Internals

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Spring Boot AutoConfiguration (+ Deep Dive)

Externalisierte Configuration (+ Demo)

Eigene Starter/Autoconfiguration

@ConfigurationPropertiesScan vs. @EnableConfigurationProperties

Kubernetes-native Konfiguration (ConfigMaps, Secrets)

Spring Boot Advanced

Alexander Erben 2

Einführung in AutoConfiguration

Convention over Configuration: Entwickler sollen so wenig wie möglich

konfigurieren müssen.

Opinionated Defaults: Spring Boot trifft sinnvolle Annahmen basierend auf den
vorhandenen Libraries (Classpath).

Startzeit-Optimierung: Statt XML-Konfiguration werden Beans dynamisch nur
dann erzeugt, wenn sie wirklich gebraucht werden.

Spring Boot Advanced

Alexander Erben 3

Wie funktioniert es? (High Level)

Beim Start der Anwendung scannt Spring Boot:

1. Classpath: Ist z.B. H2 in den Dependencies? -> Dann konfiguriere eine H2
DataSource.

2. Existing Beans: Hat der User schon eine eigene DataSource definiert? -> Dann

mache nichts.

3. Properties: Steht in application.properties ein bestimmter Schalter?

Spring Boot Advanced

Alexander Erben 4

Config Sources & Reihenfolge (Precedence)

Spring Boot liest Konfigurationen aus vielen Quellen. Die wichtigsten (überschreibend

von oben nach unten):

1. Devtools global settings (~/.spring-boot-devtools.properties)

2. @TestPropertySource (in Tests)

3. Command line arguments (z.B. --server.port=9000)

4. OS Environment Variables

5. Application Properties (JAR extern)

6. Application Properties (JAR intern)

(Insgesamt gibt es über 15 Quellen!)

Spring Boot Advanced

Alexander Erben 5

Immutable Configuration (@ConstructorBinding)

Der "moderne" Weg für Type-Safe Configuration (seit Spring Boot 2.2+ / 3.0 verfügbar).

@ConfigurationProperties(prefix = "app.mail")
public record MailProperties(String host, int port, boolean enabled) {
 // Records sind automatisch immutable und haben Konstruktoren
}

Aktivierung:
Entweder @EnableConfigurationProperties(MailProperties.class) auf einer

Konfigurationsklasse oder (neu in Boot 2.2) einfach @ConfigurationPropertiesScan .

Spring Boot Advanced

Alexander Erben 6

Profiles

Spring lädt automatisch Dateien basierend auf dem aktiven Profil:

application.yml (Immer geladen)

application-dev.yml (Überschreibt Werte, wenn Profil dev aktiv)

Man kann Profile bündeln. In application.yml :

spring:
 profiles:
 group:
 production:
 - proddb
 - cloudmetrics
 - k8s

Aktiviert man nun -Dspring.profiles.active=production , werden automatisch proddb ,

cloudmetrics und k8s mitaktiviert.

Spring Boot Advanced

Alexander Erben 7

Config Server (Git-Backed)

Trennung von Config und Code: zentrale Git-Repo, Versionierung, Audits.

Clients ziehen Config pro spring.profiles.active vom Server; können sie auch zur Laufzeit refreshen.

Mehrere Apps, gemeinsame Defaults: application.yml , my-service.yml , Profil-Dateien wie my-service-dev.yml .

Server (Spring Cloud Config Server):

spring:
 application:
 name: config-server
 cloud:
 config:
 server:
 git:
 uri: https://github.com/example/config-repo
 search-paths: config
server:
 port: 8888

Starter: spring-cloud-config-server + @EnableConfigServer .

Spring Boot Advanced

Alexander Erben 8

Client-Anbindung

Seit Boot 2.4: spring.config.import=optional:configserver:http://localhost:8888

Client greift beim Start auf /{app-name}/{profile} zu (z.B. /my-service/dev).

application.yml (Client):

spring:
 application:
 name: my-service
 config:
 import: "optional:configserver:http://localhost:8888"

In Git-Repo: my-service-dev.yml :

server:
 port: 8085
custom:
 feature-x-enabled: true

Spring Boot Advanced

Alexander Erben 9

Verschlüsselung von Properties

Config Server kann Secrets serverseitig entschlüsseln.

Symmetrischer Key im Server (encrypt.key) oder besser KMS/HSM.

application.yml (Server):

encrypt:
 key: my-strong-password

Verschlüsselung per CLI/Post:
curl -X POST localhost:8888/encrypt -d 'db-pass' → '{cipher}...

Im Git-Repo: password: "{cipher}..."
Client erhält bereits entschlüsselte Werte.

Spring Boot Advanced

Alexander Erben 10

Speichern von Secrets in externen Systemen

Beispiel Spring Cloud Vault (application.yml):

spring:
 cloud:
 vault:
 uri: http://localhost:8200
 authentication: token
 token: s.1234567890
 kv:
 enabled: true
 backend: secret
 application-name: my-service

Secrets aus secret/my-service werden als Properties verfügbar, z.B.
secret.datasource.password .

Empfohlen: Vault-Agent/K8s Auth statt statischem Token; Maskierung sensibler Werte in
Logs/Actuator.

Spring Boot Advanced

Alexander Erben 11

Vault lokal ausführen und testen

1. Vault im Dev-Mode starten (lokal, nicht für Prod):
vault server -dev -dev-root-token-id=root

2. In neuer Shell den Token setzen:
export VAULT_ADDR=http://127.0.0.1:8200

export VAULT_TOKEN=root

3. Secret schreiben:
vault kv put secret/my-service datasource.password=superSecret api.key=abc123

4. Spring Boot starten (mit oben gezeigtem application.yml):
./mvnw spring-boot:run oder ./gradlew bootRun

5. Im Code eine Property prüfen, z.B. @Value("${datasource.password}") .

6. Live ändern:
vault kv put secret/my-service datasource.password=newSecret → /actuator/refresh

aufrufen, dann den neuen Wert zeigen.

Spring Boot Advanced

Alexander Erben 12

Vault-Auth im Cluster

In Kubernetes kann man Vault auch im Cluster betreiben.

Vault Agent + K8s Auth: Pod erhält ein ServiceAccount-Token, Vault tauscht es
gegen ein kurzlebiges Vault-Token. Secrets landen als Datei/ENV oder werden per

Template gerendert.

Vorteil: Kein statischer Token im Image oder application.yml ; kurzlebige

Tokens, Audit-Log, feingranulare Policies.

Spring Boot Advanced

Alexander Erben 13

Resilienz bei Config-Fehlern

Fail Fast: Bei Spring Cloud Config ist es im Produktivbetrieb sinnvoll, den Start abbrechen zu lassen,
wenn der Server nicht erreichbar ist (spring.cloud.config.fail-fast=true).

Fallback: Für Dev/CI oder lokale Demos spring.cloud.config.fail-fast=false +

spring.config.import=optional:configserver:... → App startet mit lokalen Defaults.

Retry: spring.cloud.config.retry.* aktivieren, damit bei kurzzeitigem Ausfall (Config-Server,

Vault) erneut versucht wird.

Vault-Ausfall: spring.cloud.vault.fail-fast=false für lokale Demos, sonst true + Retry;

sensibel loggen, Secrets nicht dumpen.

Circuit Breaker fürs Laden (Hinweis): Wenn Config/Secrets über HTTP APIs nachgeladen werden,
kann ein Resilience4j-CircuitBreaker + Retry/Backoff verhindern, dass Start/Refresh unendlich hängt.

Spring Boot Advanced

Alexander Erben 14

Spring Boot Starter

Spring Boot Advanced

Alexander Erben 15

Ein eigener Starter kapselt wiederkehrende Logik (z.B. Standard-Logging, Security-
Wrapper).

Struktur

Best Practice ist ein Multi-Module Maven/Gradle Projekt:

1. my-feature-autoconfigure : Enthält den Code und die Config.

2. my-feature-starter : Leer, definiert nur my-feature-autoconfigure als

Dependency.

Spring Boot Advanced

Alexander Erben 16

@Conditional Annotationen

Bedingte Ausführung sind das Zentrum der Auto-Konfiguration.

@ConditionalOnClass(name = "com.example.Service") : Nur wenn Klasse im
Classpath.

@ConditionalOnMissingBean : Nur wenn der User keine eigene Bean dieses Typs

gebaut hat.

@ConditionalOnProperty(prefix = "app", name = "enabled", havingValue =

"true") : Nur wenn Property gesetzt.

@ConditionalOnWebApplication : Nur wenn es eine Web-App ist.

Spring Boot Advanced

Alexander Erben 17

Beispiel: AutoConfiguration Klasse

@AutoConfiguration // Alias für @Configuration in Boot 2.7+
@ConditionalOnClass(AuditService.class)
@EnableConfigurationProperties(AuditProperties.class)
public class AuditAutoConfiguration {

 @Bean
 @ConditionalOnMissingBean
 public AuditService auditService(AuditProperties props) {
 return new AuditService(props.getUrl());
 }
}

META-INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports

com.mycompany.audit.AuditAutoConfiguration

Spring Boot Advanced

Alexander Erben 18

Boot Internals: EnvironmentPostProcessor

Wenn man in den Startprozess eingreifen muss, bevor der ApplicationContext erstellt wird (z.B. um

custom Config-Dateien zu laden oder sensitive Properties zu entschlüsseln).

public class MyEnvPostProcessor implements EnvironmentPostProcessor {
 @Override
 public void postProcessEnvironment(ConfigurableEnvironment environment,
 SpringApplication application) {
 // Logik hier, z.B. PropertySources hinzufügen
 Map<String, Object> map = new HashMap<>();
 map.put("extra.property", "value");
 environment.getPropertySources()
 .addLast(new MapPropertySource("myExtra", map));
 }
}

Registrierung in META-

INF/spring/org.springframework.boot.env.EnvironmentPostProcessor.imports .

Spring Boot Advanced

Alexander Erben 19

Failure Analyzers

Eigene Fehlermeldungen beim Absturz direkt nach dem Start.

public class PortInUseFailureAnalyzer
 extends AbstractFailureAnalyzer<PortInUseException> {

 @Override
 protected FailureAnalysis analyze(Throwable rootFailure,
 PortInUseException cause) {
 return new FailureAnalysis(
 "Port " + cause.getPort() + " is already in use.",
 "Please identify and stop the process or change the port.",
 cause);
 }
}

Dies verwandelt einen Stacktrace in eine besser lesbare Fehlermeldung in der

Konsole.

Spring Boot Advanced

Alexander Erben 20

Configuration Properties: Scan vs. Enable

Spring Boot Advanced

Alexander Erben 21

@ConfigurationPropertiesScan vs.
@EnableConfigurationProperties

Zwei Wege, um @ConfigurationProperties -Klassen zu aktivieren:

Annotation Verwendung

@EnableConfigurationProperties(MyProps.class)
Explizit einzelne Klassen

registrieren

@ConfigurationPropertiesScan
Automatisch alle im Package

scannen

Spring Boot Advanced

Alexander Erben 22

@EnableConfigurationProperties

Explizite Registrierung – volle Kontrolle, aber mehr Boilerplate.

@Configuration
@EnableConfigurationProperties({
 MailProperties.class,
 StorageProperties.class
})
public class AppConfig {
 // Jede neue Properties-Klasse muss hier hinzugefügt werden
}

Vorteil: Klar ersichtlich, welche Properties aktiv sind.
Nachteil: Vergisst man eine Klasse, wird sie nicht gebunden.

Spring Boot Advanced

Alexander Erben 23

@ConfigurationPropertiesScan

Automatisches Scanning – weniger Boilerplate, wie @ComponentScan .

@SpringBootApplication
@ConfigurationPropertiesScan("com.example.config")
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Vorteil: Neue Properties-Klassen werden automatisch erkannt.
Nachteil: Weniger explizit; kann unerwartete Beans erzeugen.

Spring Boot Advanced

Alexander Erben 24

Empfehlung

Szenario Empfehlung

Kleine Anwendung, wenige Props @ConfigurationPropertiesScan

Library / Starter @EnableConfigurationProperties (explizit)

Strikte Kontrolle erforderlich @EnableConfigurationProperties

Viele Properties-Klassen @ConfigurationPropertiesScan

Spring Boot Advanced

Alexander Erben 25

Kubernetes-native Konfiguration

Spring Boot Advanced

Alexander Erben 26

Rückblick: Externalized Configuration

Wir haben bereits Spring Cloud Config und Vault als externe Konfigurationsquellen

kennengelernt.

In Kubernetes-Umgebungen gibt es eine native Alternative: ConfigMaps und Secrets

direkt importieren – ohne zusätzliche Infrastruktur wie Config Server.

Spring Boot Advanced

Alexander Erben 27

spring.config.import für Kubernetes

Seit Spring Boot 2.4+ können ConfigMaps und Secrets direkt importiert werden – ohne

Spring Cloud Kubernetes.

spring:
 config:
 import:
 - "optional:configtree:/etc/config/"

configtree: Liest Dateien aus einem Verzeichnis als Properties.

Jede Datei wird zum Property-Namen, der Inhalt zum Wert.

Spring Boot Advanced

Alexander Erben 28

Kubernetes Volume Mount

Kubernetes Deployment
spec:
 containers:
 - name: app
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: my-app-config

ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-app-config
data:
 database.url: "jdbc:postgresql://db:5432/mydb"
 cache.enabled: "true"

Spring Boot Advanced

Alexander Erben 29

Resultat im Spring Boot

Die Dateien unter /etc/config/ werden zu Properties:

Datei Property

/etc/config/database.url database.url

/etc/config/cache.enabled cache.enabled

@Value("${database.url}")
private String dbUrl; // "jdbc:postgresql://db:5432/mydb"

Spring Boot Advanced

Alexander Erben 30

Secrets als Config importieren

Für sensible Daten funktioniert es identisch mit Kubernetes Secrets:

spring:
 config:
 import:
 - "optional:configtree:/etc/secrets/"

Kubernetes Secret (base64-encoded)
apiVersion: v1
kind: Secret
metadata:
 name: db-credentials
data:
 spring.datasource.password: c3VwZXJTZWNyZXQ= # "superSecret"

Vorteil: Keine zusätzlichen Dependencies, nativer Kubernetes-Support.

Spring Boot Advanced

Alexander Erben 31

