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In diesem Modul

Testpyramide

JUnit 5 Basics (Lifecycle, Assertions, Parametrisierung)

Dynamische/Nested Tests & Extensions

Spring Boot Test-Strategien: @SpringBootTest  vs. Slices

Infrastrukturtests mit Testcontainers

@MockitoBean (Spring Boot 3.4+)

Contract Testing mit Spring Cloud Contract

Demo und Übungsaufgaben
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Testpyramide (Praxisleitplanken)

Unit: schnell, deterministisch, keine Spring-Kontexte. Ziel: Logik absichern.

Slice: fokussierte Spring-Teile ( @WebMvcTest , @DataJpaTest , @JsonTest ,
@RestClientTest ), schneller als Full Context.

Integration: @SpringBootTest , häufig mit Testcontainers für echte Infrastruktur.

E2E: sparsam, nur kritische Flows.

Guideline: Erst Unit/Slice abdecken, dann gezielt wenige Integrations- oder
Container-Tests hinzufügen.
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JUnit 5-Architektur

Im Gegensatz zu JUnit 4 ist JUnit 5 modular aufgebaut. Es besteht aus drei
Hauptkomponenten:

JUnit Platform

JUnit Jupiter JUnit Vintage

JUnit 5 Tests JUnit 4 Tests
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JUnit Platform

Das Fundament.

Bietet die Launcher API, um Tests zu starten (genutzt von IDEs, Build-Tools wie
Maven/Gradle).

TestEngine API: Schnittstelle, damit Dritte eigene Test-Frameworks (z.B. Spock,

Cucumber) auf der Plattform laufen lassen können.
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JUnit Jupiter

Das eigentliche "neue" JUnit.

Enthält das neue Programming Model (Annotationen, Assertions).

Enthält das Extension Model (Erweiterungen).

JUnit Vintage

Sorgt für Rückwärtskompatibilität.

Eine TestEngine , die alte JUnit 3 und 4 Tests auf der JUnit 5 Plattform ausführt.
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JUnit 5 Lifecycle und Assertions
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Wichtige Annotationen

@Test : Die Standard-Testmethode (nicht mehr public  nötig!).

@DisplayName("...") : Benutzerdefinierter Name für Reports/IDEs.

@BeforeEach  / @AfterEach : Setup/Teardown vor/nach jeder Methode.

@BeforeAll  / @AfterAll : Setup/Teardown einmalig pro Klasse (muss static
sein, außer bei @TestInstance(PER_CLASS) ).
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Assertions

Klassisch via org.junit.jupiter.api.Assertions :

// Grouped Assertions - Alle werden ausgeführt, auch wenn eine fehlschlägt
assertAll("address",
    () -> assertEquals("Berlin", address.getCity()),
    () -> assertEquals("10115", address.getZip())
);

// Exception Testing
assertThrows(IllegalArgumentException.class, () -> {
    service.doSomething(-1);
});
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Parametrisierte Tests (@ParameterizedTest)

Tests lassen sich in JUnit 5 einfach mit verschiedenen Eingabewerten

wiederholen.

Dies ersetzt oft komplexe Loops in Tests.

Die wichtigsten Optionen sind:

Einfache Werte mit @ValueSource

CSV-Format mit @CsvSource

Komplexe Objekte mit @MethodSource
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Datenquelle: Literale (@ValueSource)

Hier werden die Werte einfach als Literale direkt in der Annotation übergeben. Dazu

sind sie nicht dynamisch.

@ParameterizedTest
@ValueSource(strings = { "racecar", "radar", "able was I ere I saw elba" })
void palindromes(String candidate) {
    assertTrue(StringUtils.isPalindrome(candidate));
}
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Datenquelle: CSV-Format (@CsvSource)

Man kann CSV-Daten entweder in die Annotation hard-coden, oder aus einer Datei
laden (nächste Seite).

@ParameterizedTest
@CsvSource({
    "Java,      4",
    "Kotlin,    6",
    "Groovy,    6"
})
void testStringLength(String input, int expectedLength) {
    assertEquals(expectedLength, input.length());
}
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Datenquelle: CSV-Format aus Datei (@CsvFileSource)

In der Praxis ist dies langfristig erweiterbarer als die @CsvSource  mit festen Werten.

@ParameterizedTest
@CsvFileSource(resources = "/data.csv", numLinesToSkip = 1)
void toUpperCase_ShouldGenerateTheExpectedUppercaseValueCSVFile(
  String input, String expected) {
    String actualValue = input.toUpperCase();
    assertEquals(expected, actualValue);
}
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Datenquelle: Komplexe Objekte (@MethodSource)

Lädt Testdaten aus einer Methode.

@ParameterizedTest
@MethodSource("provideUsers")
void testUserValidation(User user, boolean isValid) {
    assertEquals(isValid, validator.validate(user));
}

static Stream<Arguments> provideUsers() {
    return Stream.of(
        Arguments.of(new User("Alice", 25), true),
        Arguments.of(new User("", 25), false)
    );
}
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Dynamische Tests
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Test Factories

Erzeugt Tests zur Laufzeit. Nützlich, wenn Testfälle nicht zur Compile-Zeit feststehen
(z.B. aus externen Dateien generiert).

@TestFactory
Stream<DynamicTest> generateTests() {
    return Stream.of("A", "B", "C")
        .map(input -> DynamicTest.dynamicTest("Test für " + input, () -> {
            assertNotNull(input);
        }));
}
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Nested Tests

Verschachtelte Tests sind beispielsweise für Behaviour Driven Design-Testing sinnvoll.

@DisplayName("Ein Stack")
class StackTest {

    Stack<Integer> stack = new Stack<Integer>();

    @Test
    @DisplayName("ist initial leer")
    void isNew() { assertTrue(stack.isEmpty()); }

    @Nested
    @DisplayName("nach dem Push eines Elements")
    class AfterPush {

        @BeforeEach
        void pushElement() {
            stack.push(1);
        }

        @Test
        @DisplayName("ist er nicht mehr leer")
        void isNotEmpty() {
            assertFalse(stack.isEmpty());
        }
    }
}
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Bedingte Ausführung & Erweiterungen
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Bedingungen

Mit Conditions lassen sich Tests nur unter bestimmten Umständen ausführen.

@EnabledOnOs(OS.MAC) : Wird nur ausgeführt, wenn der Test auf macOS

ausgeführt wird.

@EnabledIfEnvironmentVariable(named = "CI", matches = "true") : Wird nur

ausgeführt, wenn die Umgebungsvariable CI  existiert und den Wert true  hat.

@EnabledIf("myCustomConditionMethod") : Wird ausgeführt, wenn die Methode
myCustomConditionMethod  existiert und den Wert true  zurückgibt.
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Das Extension Model

Ersetzt Runner  (JUnit 4) und Rule . In JUnit sind viele Kernkonzepte als Extension
realisiert.

Beispiele:

ParameterResolver : Dependency Injection in Test-Methoden.

TestExecutionExceptionHandler : Exceptions behandeln.

BeforeEachCallback : Code vor Tests ausführen.

Registrierung:

@ExtendWith(MyCustomExtension.class)
class MyTest { ... }

(Spring Boot nutzt dies intern: @ExtendWith(SpringExtension.class) )
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Beispiel: Eigene Extension

Ein Extension für Zeitmessung:

public class TimingExtension implements 
    BeforeTestExecutionCallback, AfterTestExecutionCallback {

    @Override
    public void beforeTestExecution(ExtensionContext context) {
        getStore(context).put("START_TIME", System.currentTimeMillis());
    }

    @Override
    public void afterTestExecution(ExtensionContext context) {
        long startTime = getStore(context).remove("START_TIME", long.class);
        long duration = System.currentTimeMillis() - startTime;
        System.out.printf("Test %s took %d ms.%n", 
                          context.getDisplayName(), duration);
    }

    private Store getStore(ExtensionContext context) {
        return context.getStore(Namespace.create(getClass(), context.getRequiredTestMethod()));
    }
}
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Spring Boot Test Context
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Welche Spring-Tests wann?

@SpringBootTest: volle App, langsam; einsetzen, wenn mehrere Schichten

zusammenspielen müssen.

@WebMvcTest: Controller-Schicht ohne Services/DB; ideal für REST-Kontrakte &
Validation.

@JsonTest: (De-)Serialisierung prüfen, ohne Web/DB.

@DataJpaTest: JPA-Mapping & Queries; mit Testcontainers produktionsnah
machen.

@RestClientTest: HTTP-Clients isoliert gegen Stub-Server prüfen.

Faustregel: Wähle den kleinsten Slice, der die Frage beantwortet.
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@SpringBootTest

Solche Tests starten den vollen ApplicationContext.

Das ist sehr mächtig, aber auch "teuer" (also langsam).

Context Caching: Spring versucht, den Context zwischen Tests
wiederzuverwenden. Wenn ein Test den Context verändert (z.B. @MockBean ,
@TestPropertySource ), muss er neu gestartet werden -> Performance-Killer.
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Configuration Overrides

Wenn man Beans für Tests austauschen muss:

1. @TestConfiguration
Definiert zusätzliche Beans oder überschreibt existierende nur für Tests.

@TestConfiguration
public class TestConfig {
    @Bean
    @Primary // Überschreibt die produktive Bean
    public EmailService emailService() {
        return new MockEmailService();
    }
}

2. @ActiveProfiles("test")
Lädt application-test.yml  mit spezifischen Test-Properties.
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Test Slices (Scheibchenweise testen)

Spring Boot kann nur Teile der Anwendung starten. Das ist viel schneller.
Scheiben, die sich einzeln testen lassen:

Controller Layer

Persistence Layer

Serialization Layer

Client Layer
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@WebMvcTest (Controller Layer)

Lädt nur Controller, ControllerAdvice, Json-Mapper, Filter.

Lädt KEINE Services, Repositories oder Entities.

Abhängigkeiten müssen gemockt werden ( @MockBean ).

@WebMvcTest(UserController.class)
class UserControllerTest {

    @Autowired MockMvc mvc;
    @MockBean UserService userService; // Pflicht, da nicht im Context

    @Test
    void getUser() throws Exception {
        given(userService.find("1")).willReturn(new User("Alice"));
        mvc.perform(get("/users/1"))
           .andExpect(status().isOk())
           .andExpect(jsonPath("$.name").value("Alice"));
    }
}
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@DataJpaTest (Persistence Layer)

Lädt Hibernate, Spring Data, DataSource.

Konfiguriert automatisch eine In-Memory DB (H2), außer man deaktiviert es:
@AutoConfigureTestDatabase(replace = Replace.NONE)

Tests sind standardmäßig @Transactional  (Rollback am Ende).
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@JsonTest (Serialization Layer)

Testet nur JSON Serialisierung/Deserialisierung.

Konfiguriert Jackson/Gson Tester.

@JsonTest
class UserJsonTest {
    @Autowired JacksonTester<User> json;

    @Test
    void testSerialize() throws IOException {
        User user = new User("Alice", 25);
        JsonContent<User> result = json.write(user);
        
        assertThat(result).extractingJsonPathStringValue("$.name")
                          .isEqualTo("Alice");
    }
}
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@RestClientTest (Client Layer)

Testet Klassen, die RestTemplate  oder WebClient  nutzen, indem der externe Server gemockt wird.

@RestClientTest(GithubClient.class)
class GithubClientTest {
    @Autowired GithubClient client;
    @Autowired MockRestServiceServer server;

    @Test
    void testGetRepos() {
        server.expect(requestTo("/repos"))
              .andRespond(withSuccess("[]", MediaType.APPLICATION_JSON));

        var repos = client.getRepos();
        assertNotNull(repos);
    }
}
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Advanced Mocking & Spying
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@MockBean

Entfernt die echte Bean aus dem Context und ersetzt sie durch einen Mockito-
Mock.

Resetet den Mock automatisch nach jedem Test.

Achtung: Verändert den ApplicationContext -> kann Context-Reload auslösen.

@SpyBean

Behält die echte Bean im Context, wickelt aber einen Mockito-Spy drumherum.

Nützlich, wenn man die echte Logik nutzen will, aber verifizieren möchte, ob
Methoden aufgerufen wurden, oder einzelne Methoden stubben will.

Spring Boot Advanced

Alexander Erben 32



@SpringBootTest
class AuditTest {

    @SpyBean
    private AuditService auditService; // Echte Logik läuft

    @Test
    void testAudit() {
        // Rufe Business-Methode auf
        controller.doSomething();

        // Verifiziere, dass der AuditService intern gerufen wurde
        verify(auditService).recordAction(anyString());
    }
}
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Integration Testing & Testcontainers
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Das Problem mit In-Memory DBs (H2)

H2 verhält sich anders als PostgreSQL/MySQL (Syntax, Features, Datentypen).

Tests werden "grün", Produktion crasht ("It works on my machine").

Lösung: Tests gegen echte Infrastruktur laufen lassen.

Testcontainers

Eine Java-Library, die Docker-Container für JUnit-Tests startet und stoppt.
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Setup (Dependencies)

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-testcontainers</artifactId>
    <scope>test</scope>
</dependency>
<dependency>
    <groupId>org.testcontainers</groupId>
    <artifactId>postgresql</artifactId>
    <scope>test</scope>
</dependency>

Spring Boot Advanced

Alexander Erben 36



Der "Manuelle" Weg (Classic)

Definition eines Containers und manuelles Überschreiben der Properties ( DynamicPropertySource ).

@SpringBootTest
@Testcontainers
class ClassicIntegrationTest {

    @Container
    static PostgreSQLContainer<?> postgres = 
        new PostgreSQLContainer<>("postgres:15-alpine");

    @DynamicPropertySource
    static void configureProperties(DynamicPropertyRegistry registry) {
        registry.add("spring.datasource.url", postgres::getJdbcUrl);
        registry.add("spring.datasource.username", postgres::getUsername);
        registry.add("spring.datasource.password", postgres::getPassword);
    }
}
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Der "Moderne" Weg (Spring Boot 3.1+)

@ServiceConnection

Spring Boot erkennt automatisch Container-Typen und injiziert die
Verbindungsinformationen. Kein DynamicPropertySource  mehr nötig!
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@SpringBootTest
@Testcontainers
class ModernIntegrationTest {

    @Container
    @ServiceConnection // Magie passiert hier
    static PostgreSQLContainer<?> postgres = 
        new PostgreSQLContainer<>("postgres:15-alpine");

    @Container
    @ServiceConnection
    static RedisContainer redis = 
        new RedisContainer(DockerImageName.parse("redis:7"));

    @Autowired
    private UserRepository userRepository;

    @Test
    void contextLoads() {
        // DB und Redis sind automatisch konfiguriert
        userRepository.save(new User("DockerFan"));
    }
}
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Local Development mit Testcontainers

Man kann Testcontainers auch nutzen, um die Umgebung für main  (lokales Starten)
bereitzustellen, ohne Docker Compose manuell pflegen zu müssen.

TestApplication.java:

public class TestApplication {
    static void main(String[] args) {
        SpringApplication.from(MyApplication::main)
            .with(TestcontainersConfiguration.class) // Definiert Container
            .run(args);
    }
}

Damit startet mvn spring-boot:test-run  die App inklusive Datenbank im Docker-
Container.
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Testing Tipps & Strategien

1. Pyramide beachten: Viele Unit-Tests, weniger Integrationstests, wenige E2E-Tests.

2. Dirty Context vermeiden: @DirtiesContext  ist extrem langsam. Vermeide es, wenn möglich.

3. Parallelisierung: JUnit 5 kann parallel testen

( junit.jupiter.execution.parallel.enabled=true ). Vorsicht bei Datenbank-Tests (Daten-
Kollisionen)!

4. Output Capture: Testen von System.out  oder Logging.

@Test
void testLog(CapturedOutput output) {
    service.doSomething();
    assertThat(output).contains("Operation successful");
}
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Neuerungen in Spring Boot 3.4+
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@MockitoBean und @MockitoSpyBean

Ab Spring Boot 3.4 ersetzen diese Annotationen @MockBean  und @SpyBean :

Alt (deprecated) Neu (3.4+)

@MockBean @MockitoBean

@SpyBean @MockitoSpyBean

Warum? Bessere Integration mit dem Test-Lifecycle und klarere Semantik.
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@MockitoBean Beispiel

@SpringBootTest
class OrderServiceTest {

    @MockitoBean  // Ersetzt @MockBean
    private PaymentClient paymentClient;

    @Autowired
    private OrderService orderService;

    @Test
    void shouldProcessOrder() {
        given(paymentClient.charge(any())).willReturn(new PaymentResult(true));

        Order result = orderService.process(new Order());

        assertThat(result.getStatus()).isEqualTo(Status.PAID);
    }
}
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@MockitoSpyBean Beispiel

@SpringBootTest
class AuditServiceTest {

    @MockitoSpyBean  // Ersetzt @SpyBean
    private AuditService auditService;

    @Test
    void shouldCallAuditMethod() {
        // Echte Implementierung wird verwendet
        orderController.createOrder(new Order());

        // Aber wir können verifizieren, dass Methoden aufgerufen wurden
        verify(auditService).logAction(eq("ORDER_CREATED"), any());
    }
}
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Contract Testing
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Warum Contract Testing?

In Microservice-Architekturen (→ siehe Modul Microservices) ist die Schnittstelle
zwischen Services kritisch.

Problem: Service A ändert sein API → Service B bricht (erst in Produktion
bemerkt).

Lösung: Contracts definieren die erwartete Kommunikation und werden von
beiden Seiten getestet.

Kontext: Ergänzt die im Microservices-Modul besprochenen Resilience Patterns.
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Consumer-Driven Contracts

Der Consumer (Client) definiert, was er vom Producer (Server) erwartet.

1. Consumer schreibt einen Contract: "Ich erwarte GET /users/1 → {id: 1, name:
'Alice'}"

2. Producer generiert Tests aus dem Contract

3. Beide Seiten testen gegen denselben Contract

Tools: Spring Cloud Contract, Pact
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Spring Cloud Contract: Producer-Seite

Contract Definition ( /src/test/resources/contracts/user.groovy ):

Contract.make {
    description "should return user by id"
    request {
        method GET()
        url "/users/1"
    }
    response {
        status OK()
        headers {
            contentType applicationJson()
        }
        body([
            id: 1,
            name: "Alice",
            email: "alice@example.com"
        ])
    }
}
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Spring Cloud Contract: Generierte Tests

Das Maven/Gradle Plugin generiert automatisch Tests:

// Auto-generated
public class ContractVerifierTest extends UserServiceBase {

    @Test
    public void validate_shouldReturnUserById() {
        // Given:
        MockMvcRequestSpecification request = given();

        // When:
        ResponseOptions response = given().spec(request).get("/users/1");

        // Then:
        assertThat(response.statusCode()).isEqualTo(200);
        assertThat(response.body().jsonPath().get("name")).isEqualTo("Alice");
    }
}
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Spring Cloud Contract: Consumer-Seite (Stub)

Der Producer veröffentlicht einen Stub (JAR mit WireMock-Mappings).
Der Consumer nutzt diesen Stub in seinen Tests:

@SpringBootTest
@AutoConfigureStubRunner(
    ids = "com.example:user-service:+:stubs:8080",
    stubsMode = StubRunnerProperties.StubsMode.LOCAL
)
class UserClientTest {

    @Autowired
    private UserClient userClient;

    @Test
    void shouldFetchUser() {
        // Stub antwortet gemäß Contract
        User user = userClient.getUser(1L);

        assertThat(user.getName()).isEqualTo("Alice");
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