Spring Boot Advanced

Spring Boot und JUnit 5

Alexander Erben

Spring Boot Advanced

In diesem Modul

e Testpyramide

JUnit 5 Basics (Lifecycle, Assertions, Parametrisierung)

Dynamische/Nested Tests & Extensions

Spring Boot Test-Strategien: @SpringBootTest VsS. Slices
Infrastrukturtests mit Testcontainers

@MockitoBean (Spring Boot 3.4+)

Contract Testing mit Spring Cloud Contract

e Demo und Ubungsaufgaben

Alexander Erben

Spring Boot Advanced

Testpyramide (Praxisleitplanken)

Unit: schnell, deterministisch, keine Spring-Kontexte. Ziel: Logik absichern.

Slice: fokussierte Spring-Teile (@webMvcTest , @DatalpaTest , @JsonTest ,
@RestClientTest), schneller als Full Context.

Integration: @SpringBootTest , haufig mit Testcontainers fir echte Infrastruktur.

E2E: sparsam, nur kritische Flows.

Guideline: Erst Unit/Slice abdecken, dann gezielt wenige Integrations- oder
Container-Tests hinzufugen.

Alexander Erben

Spring Boot Advanced

JUnit 5-Architektur

Im Gegensatz zu JUnit 4 ist JUnit 5 modular aufgebaut. Es bestent aus drei
Hauptkomponenten:

JUnit 5 Tests JUnit 4 Tests

! |

JUnit Jupiter JUnit Vintage

N/

[JUnit Platform J

Alexander Erben

Spring Boot Advanced

JUnit Platform

e Das Fundament.

e Bietet die Launcher API, um Tests zu starten (genutzt von IDEs, Build-Tools wie
Maven/Gradle).

e TestEngine API: Schnittstelle, damit Dritte eigene Test-Frameworks (z.B. Spock,
Cucumber) auf der Plattform laufen lassen konnen.

Alexander Erben

Spring Boot Advanced

Junit Jupiter

e Das eigentliche "neue" JUnit.
e Enthalt das neue Programming Model (Annotationen, Assertions).

e Enthalt das Extension Model (Erweiterungen).
JuUnit Vintage

e Sorgt fur Ruckwartskompatibilitat.

e Eine TestEngine , die alte JUnit 3 und 4 Tests auf der JUnit 5 Plattform ausfihrt.

Alexander Erben

Spring Boot Advanced

JUnit 5 Lifecycle und Assertions

Alexander Erben

Spring Boot Advanced

Wichtige Annotationen

e @Test : Die Standard-Testmethode (nicht mehr public noétig!).
e @DisplayName("...") : Benutzerdefinierter Name flr Reports/IDEs.
e @BeforeEach / @AfterEach : Setup/Teardown vor/nach jeder Methode.

e @BeforeAll / @AfterAll : Setup/Teardown einmalig pro Klasse (muss static
sein, aul3er bel @TestInstance(PER_CLASS)).

Alexander Erben

Spring Boot Advanced

Assertions

Klassisch via org.junit.jupiter.api.Assertions :
// Grouped Assertions - Alle werden ausgefuhrt, auch wenn eine fehlschlagt

assertAll("address",
() -> assertEquals("Berlin", address.getCity()),

() -> assertEquals("10115", address.getzZip())
)

// EXception Testing
assertThrows(IllegalArgumentException.class, () -> {

service.doSomething(-1);

1)

Alexander Erben

Spring Boot Advanced

Parametrisierte Tests (@ParameterizedTest)

e Tests lassen sich in JUnit 5 einfach mit verschiedenen Eingabewerten
wiederholen.

e Dies ersetzt oft komplexe Loops in Tests.

e Die wichtigsten Optionen sind:
o Einfache Werte mit @valueSource

o CSV-Format mit @CsvSource

o Komplexe Objekte mit @MethodSource

Alexander Erben

10

Spring Boot Advanced

Datenquelle: Literale (@ValueSource)

Hier werden die Werte einfach als Literale direkt in der Annotation Ubergeben. Dazu
sind sie nicht dynamisch.

@ParameterizedTest

@vValueSource(strings = { "racecar", "radar", "able was I ere I saw elba" })

void palindromes(String candidate) {
assertTrue(StringUtils.isPalindrome(candidate));

b

Alexander Erben

11

Spring Boot Advanced

Datenquelle: CSV-Format (@CsvSource)

Man kann CSV-Daten entweder in die Annotation hard-coden, oder aus einer Datel
laden (nachste Seite).

@ParameterizedTest
@CsvSource({
"Java, 4"
"Kotlin, 6",
"Groovy, 6"

)
void testStringLength(String input, int expectedLength) {

assertEquals(expectedLength, input.length());
¥

12

Alexander Erben

Spring Boot Advanced

Datenquelle: CSV-Format aus Datei (@CsvFileSource)

In der Praxis ist dies langfristig erweiterbarer als die @CsvSource mit festen Werten.

@ParameterizedTest
@CsvFileSource(resources = "/data.csv'", numLinesToSkip = 1)
vold toUpperCase_ShouldGenerateTheExpectedUppercaseValueCSVFile(
String input, String expected) {
String actualValue = 1nput.toUpperCase();
assertEquals(expected, actualvalue);

Alexander Erben

13

Spring Boot Advanced

Datenquelle: Komplexe Objekte (@MethodSource)
Ladt Testdaten aus einer Methode.

@ParameterizedTest

@MethodSource("provideUsers")

void testUserValidation(User user, boolean isValid) {
assertEquals(isvalid, validator.validate(user));

¥

static Stream<Arguments> provideUsers() {
return Stream.of(

Arguments.of(new User("Alice", 25), true),
Arguments.of(new User("", 25), false)

)

Alexander Erben

14

Spring Boot Advanced

Dynamische Tests

Alexander Erben

15

Spring Boot Advanced

Test Factories

Erzeugt Tests zur Laufzeit. Nutzlich, wenn Testfalle nicht zur Compile-Zeit feststehen
(z.B. aus externen Dateien generiert).

@TestFactory
Stream<DynamicTest> generateTests() {
return Stream.of("A", "B", "C")
.map(input -> DynamicTest.dynamicTest("Test fur " + input, () -> {
assertNotNull(input);

1))

Alexander Erben

16

Spring Boot Advanced

Nested Tests

Verschachtelte Tests sind beispielsweise flur Behaviour Driven Design-Testing sinnvoll.

@DisplayName("Ein Stack")
class StackTest {

Stack<Integer> stack = new Stack<Integer>();

@Test
@DisplayName("ist initial leer")
void isNew() { assertTrue(stack.isEmpty()); }

@Nested
@DisplayName('"nach dem Push eines Elements")
class AfterPush {

@BeforeEach

void pushElement() {
stack.push(1);

b

@Test

@DisplayName("ist er nicht mehr leer")

void isNotEmpty() {
assertFalse(stack.isEmpty());

b

}
Alexandér Erben

17

Spring Boot Advanced

Bedingte Ausfilihrung & Erweiterungen

Alexander Erben

18

Spring Boot Advanced

Bedingungen

Mit Conditions lassen sich Tests nur unter bestimmten Umstanden ausfuhren.
e @EnabledOn0s(0S.MAC) : Wird nur ausgefuhrt, wenn der Test auf macOS
ausgefuhrt wird.

e @EnabledIfEnvironmentVariable(named = "CI", matches = "true") : Wird nur
ausgefuhrt, wenn die Umgebungsvariable c1I existiert und den Wert true hat.

e @EnabledIf("myCustomConditionMethod") : Wird ausgefihrt, wenn die Methode
myCustomConditionMethod existiert und den Wert true zurlckgibt.

Alexander Erben

19

Spring Boot Advanced

Das Extension Model

Ersetzt Runner (JUnit4) und Rule . In JUnit sind viele Kernkonzepte als Extension
realisiert.
Beispiele:

e ParameterResolver : Dependency Injection in Test-Methoden.

e TestExecutionExceptionHandler : Exceptions behandeln.

e BeforeEachCallback : Code vor Tests ausfuhren.
Registrierung:

@ExtendwWith(MyCustomExtension.class)
class MyTest { ... }

(Spring Boot nutzt dies intern: @Extendwith(SpringExtension.class))

Alexander Erben

20

Spring Boot Advanced

Beispiel: Eigene Extension
Ein Extension flr Zeitmessung:

public class TimingExtension implements
BeforeTestExecutionCallback, AfterTestExecutionCallback {

@Override
public void beforeTestExecution(ExtensionContext context) {

getStore(context).put("START_TIME", System.currentTimeMillis());

}

@Override
public void afterTestExecution(ExtensionContext context) {
long startTime = getStore(context).remove("START_TIME", long
long duration = System.currentTimeMillis() - startTime;
System.out.printf("Test %s took %d ms.%n",
context.getDisplayName(), duration);

}

private Store getStore(ExtensionContext context) {
return context.getStore(Namespace.create(getClass(), context
b

Alexander Erben

.class);

.getRequiredTestMethod()));

21

Spring Boot Advanced

Spring Boot Test Context

Alexander Erben

22

Spring Boot Advanced

Welche Spring-Tests wann?

e @SpringBootTest: volle App, langsam; einsetzen, wenn mehrere Schichten
zusammenspielen mussen.

o @WebMvcTest: Controller-Schicht ohne Services/DB; ideal fir REST-Kontrakte &
Validation.

e @JsonTest: (De-)Serialisierung prufen, ohne Web/DB.

o @DataJpaTest: JPA-Mapping & Queries; mit Testcontainers produktionsnah
machen.

» @RestClientTest: HTTP-Clients isoliert gegen Stub-Server prufen.

e Faustregel: Wahle den kleinsten Slice, der die Frage beantwortet.

Alexander Erben

23

Spring Boot Advanced

@SpringBootTest

e Solche Tests starten den vollen ApplicationContext.
e Das ist sehr machtig, aber auch "teuer" (also langsam).

e Context Caching: Spring versucht, den Context zwischen Tests
wiederzuverwenden. Wenn ein Test den Context verandert (z.B. @MockBean |,
@TestPropertySource), muss er neu gestartet werden -> Performance-Killer.

Alexander Erben

24

Spring Boot Advanced

Configuration Overrides

Wenn man Beans fur Tests austauschen muss;

1. @TestConfiguration
Definiert zusatzliche Beans oder uberschreibt existierende nur fur Tests.

@TestConfiguration
public class TestConfig {
@Bean
@Primary // Uberschreibt die produktive Bean
public EmailService emailService() {
return new MockEmailService();
¥

2. @ActiveProfiles("test")
Ladt application-test.yml mit spezifischen Test-Properties.

Alexander Erben

25

Spring Boot Advanced

Test Slices (Scheibchenweise testen)

Spring Boot kann nur Teile der Anwendung starten. Das ist viel schneller.
Scheiben, die sich einzeln testen lassen:

e Controller Layer

e Persistence Layer

e Serialization Layer

e Client Layer

Alexander Erben

26

Spring Boot Advanced

@WebMvcTest (Controller Layer)

e Ladt nur Controller, ControllerAdvice, Json-Mapper, Filter.
o Ladt KEINE Services, Repositories oder Entities.

o Abhangigkeiten missen gemockt werden (@MockBean).

@webMvcTest (UserController.class)
class UserControllerTest {

@Autowired MockMvc mvc;
@MockBean UserService userService; // Pflicht, da nicht im Context

@Test
void getUser() throws Exception {
given(userService.find("1")).willReturn(new User("Alice"));
mvc.perform(get("/users/1"))
.andeExpect(status().1s0k())
.andExpect(jsonPath("$.name").value("Alice"));

Alexander Erben

27

Spring Boot Advanced

@DataJpaTest (Persistence Layer)

e Ladt Hibernate, Spring Data, DataSource.

o Konfiguriert automatisch eine In-Memory DB (H2), aul3er man deaktiviert es:
@AutoConfigureTestDatabase(replace = Replace.NONE)

e Tests sind standardmaldig @Transactional (Rollback am Ende).

Alexander Erben

28

Spring Boot Advanced

@JsonTest (Serialization Layer)

o Testet nur JSON Serialisierung/Deserialisierung.

o Konfiguriert Jackson/Gson Tester.

@JsonTest
class UserJsonTest {
@Autowired JacksonTester<User> json;

@Test

vold testSerialize() throws IOException {
User user = new User("Alice", 25);
JsonContent<User> result = json.write(user);

assertThat(result).extractingJsonPathStringvalue("$.name")
.1sequalTo("Alice");

Alexander Erben

29

Spring Boot Advanced

@RestClientTest (Client Layer)

Testet Klassen, die RestTemplate oder webClient nutzen, indem der externe Server gemockt wird.

@RestClientTest(GithubClient.class)
class GithubClientTest {

@Autowired GithubClient client;
@Autowired MockRestServiceServer server;

@Test
void testGetRepos() {
server.expect(requestTo("/repos"))

.andRespond(withSuccess("[]", MediaType.APPLICATION_JSON));

var repos = client.getRepos();
assertNotNull(repos);

Alexander Erben

30

Spring Boot Advanced

Advanced Mocking & Spying

Alexander Erben

31

Spring Boot Advanced

@MockBean

e Entfernt die echte Bean aus dem Context und ersetzt sie durch einen Mockito-
Mock.

e Resetet den Mock automatisch nach jedem Test.

e Achtung: Verandert den ApplicationContext -> kann Context-Reload auslésen.

@SpyBean

e Behélt die echte Bean im Context, wickelt aber einen Mockito-Spy drumherum.

e Nutzlich, wenn man die echte Logik nutzen will, aber verifizieren mochte, ob
Methoden aufgerufen wurden, oder einzelne Methoden stubben will.

Alexander Erben

32

Spring Boot Advanced

@SpringBootTest
class AuditTest {

@SpyBean
private AuditService auditService; // Echte Logik lauft

@Test

vold testAudit() {
// Rufe Business-Methode auf
controller.doSomething();

// Verifiziere, dass der AuditService intern gerufen wurde
verify(auditService).recordAction(anyString());

Alexander Erben

33

Spring Boot Advanced

Integration Testing & Testcontainers

Alexander Erben

34

Spring Boot Advanced

Das Problem mit In-Memory DBs (H2)

e H2 verhalt sich anders als PostgreSQL/MySQL (Syntax, Features, Datentypen).
e Tests werden "grun", Produktion crasht ("It works on my machine").

e LOsung: Tests gegen echte Infrastruktur laufen lassen.

Testcontainers

Eine Java-Library, die Docker-Container fur JUnit-Tests startet und stoppt.

Alexander Erben

35

Spring Boot Advanced

Setup (Dependencies)

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-testcontainers</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.testcontainers</groupId>
<artifactId>postgresqgl</artifactId>
<scope>test</scope>

</dependency>

Alexander Erben

36

Spring Boot Advanced

Der "Manuelle" Weg (Classic)
Definition eines Containers und manuelles Uberschreiben der Properties (DynamicPropertySource).

@SpringBootTest
@Testcontainers
class ClassicIntegrationTest {

@Container
static PostgreSQLContainer<?> postgres =
new PostgreSQLContainer<>("postgres:15-alpine");

@DynamicPropertySource

static void configureProperties(DynamicPropertyRegistry registry) {
registry.add("spring.datasource.url", postgres::getJddbcUrl);
registry.add("spring.datasource.username'", postgres::getUsername);
registry.add("spring.datasource.password", postgres::getPassword);

Alexander Erben

37

Spring Boot Advanced

Der "Moderne" Weg (Spring Boot 3.1+)

@ServiceConnection

Spring Boot erkennt automatisch Container-Typen und injiziert die
Verbindungsinformationen. Kein DynamicPropertySource mehr notig!

Alexander Erben

38

Spring Boot Advanced

@SpringBootTest
@Testcontainers
class ModernIntegrationTest {

@Container
@ServiceConnection // Magie passiert hier
static PostgreSQLContainer<?> postgres =
new PostgreSQLContainer<>("postgres:15-alpine");

@Container
@ServiceConnection
static RedisContainer redis =
new RedisContainer (DockerImageName.parse('"redis:7"));

@Autowired
private UserRepository userRepository;

@Test

void contextLoads() {
// DB und Redis sind automatisch konfiguriert
userRepository.save(new User("DockerFan")),;

Alexander Erben

Spring Boot Advanced

Local Development mit Testcontainers

Man kann Testcontainers auch nutzen, um die Umgebung fir main (lokales Starten)
bereitzustellen, ohne Docker Compose manuell pflegen zu mussen.

TestApplication.java:

public class TestApplication {
static void main(String[] args) {
SpringApplication.from(MyApplication: :main)
.with(TestcontainersConfiguration.class) // Definiert Container
.run(args);

Damit startet mvn spring-boot:test-run die App inklusive Datenbank im Docker-
Container.

Alexander Erben

40

Spring Boot Advanced

Testing Tipps & Strategien

1. Pyramide beachten: Viele Unit-Tests, weniger Integrationstests, wenige E2E-Tests.
2. Dirty Context vermeiden: @birtiesContext istextrem langsam. Vermeide es, wenn maoglich.

3. Parallelisierung: JUnit 5 kann parallel testen
(junit.jupiter.execution.parallel.enabled=true). Vorsicht bei Datenbank-Tests (Daten-
Kollisionen)!

4. Output Capture: Testen von System.out oder Logging.

@Test

volid testLog(CapturedOutput output) {
service.doSomething();
assertThat(output).contains("Operation successful");

Alexander Erben

41

Spring Boot Advanced

Neuerungen In Spring Boot 3.4+

Alexander Erben

42

Spring Boot Advanced

@MockitoBean und @MockitoSpyBean

Ab Spring Boot 3.4 ersetzen diese Annotationen @vockBean und @SpyBean :

Alt (deprecated) Neu (3.4+)
@MockBean @MockitoBean
@SpyBean @MockitoSpyBean

Warum? Bessere Integration mit dem Test-Lifecycle und klarere Semantik.

Alexander Erben

43

Spring Boot Advanced

@MockitoBean Beispiel

@SpringBootTest
class OrderServiceTest {

@MockitoBean // Ersetzt @MockBean
private PaymentClient paymentClient;

@Autowired
private OrderService orderService;

@Test
void shouldProcessOrder() {
given(paymentClient.charge(any())).willReturn(new PaymentResult(true));

Order result = orderService.process(new Order());

assertThat(result.getStatus()).1isEqualTo(Status.PAID);

}

Alexander Erben

44

Spring Boot Advanced

@MockitoSpyBean Beispiel

@SpringBootTest
class AuditServiceTest {

@MockitoSpyBean // Ersetzt @SpyBean
private AuditService auditService;

@Test

void shouldCallAuditMethod() {
// Echte Implementierung wird verwendet
orderController.createOrder(new Order());

// Aber wir konnen verifizieren, dass Methoden aufgerufen wurden
verify(auditService).logAction(eq("ORDER_CREATED"), any());

Alexander Erben

45

Spring Boot Advanced

Contract Testing

Alexander Erben

46

Spring Boot Advanced

Warum Contract Testing?

In Microservice-Architekturen (- siehe Modul Microservices) ist die Schnittstelle
zwischen Services kritisch.

 Problem: Service A andert sein APl — Service B bricht (erst in Produktion

bemerkt).

e LOosung: Contracts definieren die erwartete Kommunikation und werden von
beiden Seiten getestet.

o Kontext: Erganzt die im Microservices-Modul besprochenen Resilience Patterns.

Alexander Erben 47

Spring Boot Advanced

Consumer-Driven Contracts

Der Consumer (Client) definiert, was er vom Producer (Server) erwartet.

1. Consumer schreibt einen Contract: "Ich erwarte GET /users/1 — {id: 1, name:
'‘Alice'}"
2. Producer generiert Tests aus dem Contract

3. Beide Seiten testen gegen denselben Contract

Tools: Spring Cloud Contract, Pact

Alexander Erben

48

Spring Boot Advanced

Spring Cloud Contract: Producer-Seite

Contract Definition (/src/test/resources/contracts/user.groovy).

Contract.make {
description "should return user by id"
request {
method GET()
url "/users/1"
}
response {
status OK()
headers {
contentType applicationJson()

b
body ([

id: 1,

name: "Alice",

email: "alice@example.com"
1)

Alexander Erbel}

-

49

Spring Boot Advanced

Spring Cloud Contract: Generierte Tests

Das Maven/Gradle Plugin generiert automatisch Tests:

// Auto-generated
public class ContractVerifierTest extends UserServiceBase {

@Test
public void validate_shouldReturnUserById() {
// Given:
MockMvcRequestSpecification request = given();

// When:
ResponseOptions response = given().spec(request).get("/users/1");

// Then:
assertThat(response.statusCode()).isEqualTo(200);
assertThat(response.body().jsonPath().get("name")).isEqualTo("Alice");

}

Alexander Erben 50

Spring Boot Advanced

Spring Cloud Contract: Consumer-Seite (Stub)

Der Producer veroffentlicht einen Stub (JAR mit WireMock-Mappings).

Der Consumer nutzt diesen Stub in seinen Tests:

@SpringBootTest

@AutoConfigureStubRunner (
1ds = "com.example:user-service:+:stubs:8080",
stubsMode = StubRunnerProperties.StubsMode.LOCAL

)

class UserClientTest {

@Autowilred
private UserClient userClient;

@Test
vold shouldFetchUser() {
// Stub antwortet gemédll Contract
User user = userClient.getUser(1L);,
Alexander Erben
assertThat(user.aoaetName()).i1isFaualTo("Alice"):

51

