
Spring Boot und JUnit 5

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Testpyramide

JUnit 5 Basics (Lifecycle, Assertions, Parametrisierung)

Dynamische/Nested Tests & Extensions

Spring Boot Test-Strategien: @SpringBootTest vs. Slices

Infrastrukturtests mit Testcontainers

@MockitoBean (Spring Boot 3.4+)

Contract Testing mit Spring Cloud Contract

Demo und Übungsaufgaben

Spring Boot Advanced

Alexander Erben 2

Testpyramide (Praxisleitplanken)

Unit: schnell, deterministisch, keine Spring-Kontexte. Ziel: Logik absichern.

Slice: fokussierte Spring-Teile (@WebMvcTest , @DataJpaTest , @JsonTest ,
@RestClientTest), schneller als Full Context.

Integration: @SpringBootTest , häufig mit Testcontainers für echte Infrastruktur.

E2E: sparsam, nur kritische Flows.

Guideline: Erst Unit/Slice abdecken, dann gezielt wenige Integrations- oder
Container-Tests hinzufügen.

Spring Boot Advanced

Alexander Erben 3

JUnit 5-Architektur

Im Gegensatz zu JUnit 4 ist JUnit 5 modular aufgebaut. Es besteht aus drei
Hauptkomponenten:

JUnit Platform

JUnit Jupiter JUnit Vintage

JUnit 5 Tests JUnit 4 Tests

Spring Boot Advanced

Alexander Erben 4

JUnit Platform

Das Fundament.

Bietet die Launcher API, um Tests zu starten (genutzt von IDEs, Build-Tools wie
Maven/Gradle).

TestEngine API: Schnittstelle, damit Dritte eigene Test-Frameworks (z.B. Spock,

Cucumber) auf der Plattform laufen lassen können.

Spring Boot Advanced

Alexander Erben 5

JUnit Jupiter

Das eigentliche "neue" JUnit.

Enthält das neue Programming Model (Annotationen, Assertions).

Enthält das Extension Model (Erweiterungen).

JUnit Vintage

Sorgt für Rückwärtskompatibilität.

Eine TestEngine , die alte JUnit 3 und 4 Tests auf der JUnit 5 Plattform ausführt.

Spring Boot Advanced

Alexander Erben 6

JUnit 5 Lifecycle und Assertions

Spring Boot Advanced

Alexander Erben 7

Wichtige Annotationen

@Test : Die Standard-Testmethode (nicht mehr public nötig!).

@DisplayName("...") : Benutzerdefinierter Name für Reports/IDEs.

@BeforeEach / @AfterEach : Setup/Teardown vor/nach jeder Methode.

@BeforeAll / @AfterAll : Setup/Teardown einmalig pro Klasse (muss static
sein, außer bei @TestInstance(PER_CLASS)).

Spring Boot Advanced

Alexander Erben 8

Assertions

Klassisch via org.junit.jupiter.api.Assertions :

// Grouped Assertions - Alle werden ausgeführt, auch wenn eine fehlschlägt
assertAll("address",
 () -> assertEquals("Berlin", address.getCity()),
 () -> assertEquals("10115", address.getZip())
);

// Exception Testing
assertThrows(IllegalArgumentException.class, () -> {
 service.doSomething(-1);
});

Spring Boot Advanced

Alexander Erben 9

Parametrisierte Tests (@ParameterizedTest)

Tests lassen sich in JUnit 5 einfach mit verschiedenen Eingabewerten

wiederholen.

Dies ersetzt oft komplexe Loops in Tests.

Die wichtigsten Optionen sind:

Einfache Werte mit @ValueSource

CSV-Format mit @CsvSource

Komplexe Objekte mit @MethodSource

Spring Boot Advanced

Alexander Erben 10

Datenquelle: Literale (@ValueSource)

Hier werden die Werte einfach als Literale direkt in der Annotation übergeben. Dazu

sind sie nicht dynamisch.

@ParameterizedTest
@ValueSource(strings = { "racecar", "radar", "able was I ere I saw elba" })
void palindromes(String candidate) {
 assertTrue(StringUtils.isPalindrome(candidate));
}

Spring Boot Advanced

Alexander Erben 11

Datenquelle: CSV-Format (@CsvSource)

Man kann CSV-Daten entweder in die Annotation hard-coden, oder aus einer Datei
laden (nächste Seite).

@ParameterizedTest
@CsvSource({
 "Java, 4",
 "Kotlin, 6",
 "Groovy, 6"
})
void testStringLength(String input, int expectedLength) {
 assertEquals(expectedLength, input.length());
}

Spring Boot Advanced

Alexander Erben 12

Datenquelle: CSV-Format aus Datei (@CsvFileSource)

In der Praxis ist dies langfristig erweiterbarer als die @CsvSource mit festen Werten.

@ParameterizedTest
@CsvFileSource(resources = "/data.csv", numLinesToSkip = 1)
void toUpperCase_ShouldGenerateTheExpectedUppercaseValueCSVFile(
 String input, String expected) {
 String actualValue = input.toUpperCase();
 assertEquals(expected, actualValue);
}

Spring Boot Advanced

Alexander Erben 13

Datenquelle: Komplexe Objekte (@MethodSource)

Lädt Testdaten aus einer Methode.

@ParameterizedTest
@MethodSource("provideUsers")
void testUserValidation(User user, boolean isValid) {
 assertEquals(isValid, validator.validate(user));
}

static Stream<Arguments> provideUsers() {
 return Stream.of(
 Arguments.of(new User("Alice", 25), true),
 Arguments.of(new User("", 25), false)
);
}

Spring Boot Advanced

Alexander Erben 14

Dynamische Tests

Spring Boot Advanced

Alexander Erben 15

Test Factories

Erzeugt Tests zur Laufzeit. Nützlich, wenn Testfälle nicht zur Compile-Zeit feststehen
(z.B. aus externen Dateien generiert).

@TestFactory
Stream<DynamicTest> generateTests() {
 return Stream.of("A", "B", "C")
 .map(input -> DynamicTest.dynamicTest("Test für " + input, () -> {
 assertNotNull(input);
 }));
}

Spring Boot Advanced

Alexander Erben 16

Nested Tests

Verschachtelte Tests sind beispielsweise für Behaviour Driven Design-Testing sinnvoll.

@DisplayName("Ein Stack")
class StackTest {

 Stack<Integer> stack = new Stack<Integer>();

 @Test
 @DisplayName("ist initial leer")
 void isNew() { assertTrue(stack.isEmpty()); }

 @Nested
 @DisplayName("nach dem Push eines Elements")
 class AfterPush {

 @BeforeEach
 void pushElement() {
 stack.push(1);
 }

 @Test
 @DisplayName("ist er nicht mehr leer")
 void isNotEmpty() {
 assertFalse(stack.isEmpty());
 }
 }
}

Spring Boot Advanced

Alexander Erben 17

Bedingte Ausführung & Erweiterungen

Spring Boot Advanced

Alexander Erben 18

Bedingungen

Mit Conditions lassen sich Tests nur unter bestimmten Umständen ausführen.

@EnabledOnOs(OS.MAC) : Wird nur ausgeführt, wenn der Test auf macOS

ausgeführt wird.

@EnabledIfEnvironmentVariable(named = "CI", matches = "true") : Wird nur

ausgeführt, wenn die Umgebungsvariable CI existiert und den Wert true hat.

@EnabledIf("myCustomConditionMethod") : Wird ausgeführt, wenn die Methode
myCustomConditionMethod existiert und den Wert true zurückgibt.

Spring Boot Advanced

Alexander Erben 19

Das Extension Model

Ersetzt Runner (JUnit 4) und Rule . In JUnit sind viele Kernkonzepte als Extension
realisiert.

Beispiele:

ParameterResolver : Dependency Injection in Test-Methoden.

TestExecutionExceptionHandler : Exceptions behandeln.

BeforeEachCallback : Code vor Tests ausführen.

Registrierung:

@ExtendWith(MyCustomExtension.class)
class MyTest { ... }

(Spring Boot nutzt dies intern: @ExtendWith(SpringExtension.class))

Spring Boot Advanced

Alexander Erben 20

Beispiel: Eigene Extension

Ein Extension für Zeitmessung:

public class TimingExtension implements
 BeforeTestExecutionCallback, AfterTestExecutionCallback {

 @Override
 public void beforeTestExecution(ExtensionContext context) {
 getStore(context).put("START_TIME", System.currentTimeMillis());
 }

 @Override
 public void afterTestExecution(ExtensionContext context) {
 long startTime = getStore(context).remove("START_TIME", long.class);
 long duration = System.currentTimeMillis() - startTime;
 System.out.printf("Test %s took %d ms.%n",
 context.getDisplayName(), duration);
 }

 private Store getStore(ExtensionContext context) {
 return context.getStore(Namespace.create(getClass(), context.getRequiredTestMethod()));
 }
}

Spring Boot Advanced

Alexander Erben 21

Spring Boot Test Context

Spring Boot Advanced

Alexander Erben 22

Welche Spring-Tests wann?

@SpringBootTest: volle App, langsam; einsetzen, wenn mehrere Schichten

zusammenspielen müssen.

@WebMvcTest: Controller-Schicht ohne Services/DB; ideal für REST-Kontrakte &
Validation.

@JsonTest: (De-)Serialisierung prüfen, ohne Web/DB.

@DataJpaTest: JPA-Mapping & Queries; mit Testcontainers produktionsnah
machen.

@RestClientTest: HTTP-Clients isoliert gegen Stub-Server prüfen.

Faustregel: Wähle den kleinsten Slice, der die Frage beantwortet.

Spring Boot Advanced

Alexander Erben 23

@SpringBootTest

Solche Tests starten den vollen ApplicationContext.

Das ist sehr mächtig, aber auch "teuer" (also langsam).

Context Caching: Spring versucht, den Context zwischen Tests
wiederzuverwenden. Wenn ein Test den Context verändert (z.B. @MockBean ,
@TestPropertySource), muss er neu gestartet werden -> Performance-Killer.

Spring Boot Advanced

Alexander Erben 24

Configuration Overrides

Wenn man Beans für Tests austauschen muss:

1. @TestConfiguration
Definiert zusätzliche Beans oder überschreibt existierende nur für Tests.

@TestConfiguration
public class TestConfig {
 @Bean
 @Primary // Überschreibt die produktive Bean
 public EmailService emailService() {
 return new MockEmailService();
 }
}

2. @ActiveProfiles("test")
Lädt application-test.yml mit spezifischen Test-Properties.

Spring Boot Advanced

Alexander Erben 25

Test Slices (Scheibchenweise testen)

Spring Boot kann nur Teile der Anwendung starten. Das ist viel schneller.
Scheiben, die sich einzeln testen lassen:

Controller Layer

Persistence Layer

Serialization Layer

Client Layer

Spring Boot Advanced

Alexander Erben 26

@WebMvcTest (Controller Layer)

Lädt nur Controller, ControllerAdvice, Json-Mapper, Filter.

Lädt KEINE Services, Repositories oder Entities.

Abhängigkeiten müssen gemockt werden (@MockBean).

@WebMvcTest(UserController.class)
class UserControllerTest {

 @Autowired MockMvc mvc;
 @MockBean UserService userService; // Pflicht, da nicht im Context

 @Test
 void getUser() throws Exception {
 given(userService.find("1")).willReturn(new User("Alice"));
 mvc.perform(get("/users/1"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.name").value("Alice"));
 }
}

Spring Boot Advanced

Alexander Erben 27

@DataJpaTest (Persistence Layer)

Lädt Hibernate, Spring Data, DataSource.

Konfiguriert automatisch eine In-Memory DB (H2), außer man deaktiviert es:
@AutoConfigureTestDatabase(replace = Replace.NONE)

Tests sind standardmäßig @Transactional (Rollback am Ende).

Spring Boot Advanced

Alexander Erben 28

@JsonTest (Serialization Layer)

Testet nur JSON Serialisierung/Deserialisierung.

Konfiguriert Jackson/Gson Tester.

@JsonTest
class UserJsonTest {
 @Autowired JacksonTester<User> json;

 @Test
 void testSerialize() throws IOException {
 User user = new User("Alice", 25);
 JsonContent<User> result = json.write(user);

 assertThat(result).extractingJsonPathStringValue("$.name")
 .isEqualTo("Alice");
 }
}

Spring Boot Advanced

Alexander Erben 29

@RestClientTest (Client Layer)

Testet Klassen, die RestTemplate oder WebClient nutzen, indem der externe Server gemockt wird.

@RestClientTest(GithubClient.class)
class GithubClientTest {
 @Autowired GithubClient client;
 @Autowired MockRestServiceServer server;

 @Test
 void testGetRepos() {
 server.expect(requestTo("/repos"))
 .andRespond(withSuccess("[]", MediaType.APPLICATION_JSON));

 var repos = client.getRepos();
 assertNotNull(repos);
 }
}

Spring Boot Advanced

Alexander Erben 30

Advanced Mocking & Spying

Spring Boot Advanced

Alexander Erben 31

@MockBean

Entfernt die echte Bean aus dem Context und ersetzt sie durch einen Mockito-
Mock.

Resetet den Mock automatisch nach jedem Test.

Achtung: Verändert den ApplicationContext -> kann Context-Reload auslösen.

@SpyBean

Behält die echte Bean im Context, wickelt aber einen Mockito-Spy drumherum.

Nützlich, wenn man die echte Logik nutzen will, aber verifizieren möchte, ob
Methoden aufgerufen wurden, oder einzelne Methoden stubben will.

Spring Boot Advanced

Alexander Erben 32

@SpringBootTest
class AuditTest {

 @SpyBean
 private AuditService auditService; // Echte Logik läuft

 @Test
 void testAudit() {
 // Rufe Business-Methode auf
 controller.doSomething();

 // Verifiziere, dass der AuditService intern gerufen wurde
 verify(auditService).recordAction(anyString());
 }
}

Spring Boot Advanced

Alexander Erben 33

Integration Testing & Testcontainers

Spring Boot Advanced

Alexander Erben 34

Das Problem mit In-Memory DBs (H2)

H2 verhält sich anders als PostgreSQL/MySQL (Syntax, Features, Datentypen).

Tests werden "grün", Produktion crasht ("It works on my machine").

Lösung: Tests gegen echte Infrastruktur laufen lassen.

Testcontainers

Eine Java-Library, die Docker-Container für JUnit-Tests startet und stoppt.

Spring Boot Advanced

Alexander Erben 35

Setup (Dependencies)

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-testcontainers</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.testcontainers</groupId>
 <artifactId>postgresql</artifactId>
 <scope>test</scope>
</dependency>

Spring Boot Advanced

Alexander Erben 36

Der "Manuelle" Weg (Classic)

Definition eines Containers und manuelles Überschreiben der Properties (DynamicPropertySource).

@SpringBootTest
@Testcontainers
class ClassicIntegrationTest {

 @Container
 static PostgreSQLContainer<?> postgres =
 new PostgreSQLContainer<>("postgres:15-alpine");

 @DynamicPropertySource
 static void configureProperties(DynamicPropertyRegistry registry) {
 registry.add("spring.datasource.url", postgres::getJdbcUrl);
 registry.add("spring.datasource.username", postgres::getUsername);
 registry.add("spring.datasource.password", postgres::getPassword);
 }
}

Spring Boot Advanced

Alexander Erben 37

Der "Moderne" Weg (Spring Boot 3.1+)

@ServiceConnection

Spring Boot erkennt automatisch Container-Typen und injiziert die
Verbindungsinformationen. Kein DynamicPropertySource mehr nötig!

Spring Boot Advanced

Alexander Erben 38

@SpringBootTest
@Testcontainers
class ModernIntegrationTest {

 @Container
 @ServiceConnection // Magie passiert hier
 static PostgreSQLContainer<?> postgres =
 new PostgreSQLContainer<>("postgres:15-alpine");

 @Container
 @ServiceConnection
 static RedisContainer redis =
 new RedisContainer(DockerImageName.parse("redis:7"));

 @Autowired
 private UserRepository userRepository;

 @Test
 void contextLoads() {
 // DB und Redis sind automatisch konfiguriert
 userRepository.save(new User("DockerFan"));
 }
}

Spring Boot Advanced

Alexander Erben 39

Local Development mit Testcontainers

Man kann Testcontainers auch nutzen, um die Umgebung für main (lokales Starten)
bereitzustellen, ohne Docker Compose manuell pflegen zu müssen.

TestApplication.java:

public class TestApplication {
 static void main(String[] args) {
 SpringApplication.from(MyApplication::main)
 .with(TestcontainersConfiguration.class) // Definiert Container
 .run(args);
 }
}

Damit startet mvn spring-boot:test-run die App inklusive Datenbank im Docker-
Container.

Spring Boot Advanced

Alexander Erben 40

Testing Tipps & Strategien

1. Pyramide beachten: Viele Unit-Tests, weniger Integrationstests, wenige E2E-Tests.

2. Dirty Context vermeiden: @DirtiesContext ist extrem langsam. Vermeide es, wenn möglich.

3. Parallelisierung: JUnit 5 kann parallel testen

(junit.jupiter.execution.parallel.enabled=true). Vorsicht bei Datenbank-Tests (Daten-
Kollisionen)!

4. Output Capture: Testen von System.out oder Logging.

@Test
void testLog(CapturedOutput output) {
 service.doSomething();
 assertThat(output).contains("Operation successful");
}

Spring Boot Advanced

Alexander Erben 41

Neuerungen in Spring Boot 3.4+

Spring Boot Advanced

Alexander Erben 42

@MockitoBean und @MockitoSpyBean

Ab Spring Boot 3.4 ersetzen diese Annotationen @MockBean und @SpyBean :

Alt (deprecated) Neu (3.4+)

@MockBean @MockitoBean

@SpyBean @MockitoSpyBean

Warum? Bessere Integration mit dem Test-Lifecycle und klarere Semantik.

Spring Boot Advanced

Alexander Erben 43

@MockitoBean Beispiel

@SpringBootTest
class OrderServiceTest {

 @MockitoBean // Ersetzt @MockBean
 private PaymentClient paymentClient;

 @Autowired
 private OrderService orderService;

 @Test
 void shouldProcessOrder() {
 given(paymentClient.charge(any())).willReturn(new PaymentResult(true));

 Order result = orderService.process(new Order());

 assertThat(result.getStatus()).isEqualTo(Status.PAID);
 }
}

Spring Boot Advanced

Alexander Erben 44

@MockitoSpyBean Beispiel

@SpringBootTest
class AuditServiceTest {

 @MockitoSpyBean // Ersetzt @SpyBean
 private AuditService auditService;

 @Test
 void shouldCallAuditMethod() {
 // Echte Implementierung wird verwendet
 orderController.createOrder(new Order());

 // Aber wir können verifizieren, dass Methoden aufgerufen wurden
 verify(auditService).logAction(eq("ORDER_CREATED"), any());
 }
}

Spring Boot Advanced

Alexander Erben 45

Contract Testing

Spring Boot Advanced

Alexander Erben 46

Warum Contract Testing?

In Microservice-Architekturen (→ siehe Modul Microservices) ist die Schnittstelle
zwischen Services kritisch.

Problem: Service A ändert sein API → Service B bricht (erst in Produktion
bemerkt).

Lösung: Contracts definieren die erwartete Kommunikation und werden von
beiden Seiten getestet.

Kontext: Ergänzt die im Microservices-Modul besprochenen Resilience Patterns.

Spring Boot Advanced

Alexander Erben 47

Consumer-Driven Contracts

Der Consumer (Client) definiert, was er vom Producer (Server) erwartet.

1. Consumer schreibt einen Contract: "Ich erwarte GET /users/1 → {id: 1, name:
'Alice'}"

2. Producer generiert Tests aus dem Contract

3. Beide Seiten testen gegen denselben Contract

Tools: Spring Cloud Contract, Pact

Spring Boot Advanced

Alexander Erben 48

Spring Cloud Contract: Producer-Seite

Contract Definition (/src/test/resources/contracts/user.groovy):

Contract.make {
 description "should return user by id"
 request {
 method GET()
 url "/users/1"
 }
 response {
 status OK()
 headers {
 contentType applicationJson()
 }
 body([
 id: 1,
 name: "Alice",
 email: "alice@example.com"
])
 }
}

Spring Boot Advanced

Alexander Erben 49

Spring Cloud Contract: Generierte Tests

Das Maven/Gradle Plugin generiert automatisch Tests:

// Auto-generated
public class ContractVerifierTest extends UserServiceBase {

 @Test
 public void validate_shouldReturnUserById() {
 // Given:
 MockMvcRequestSpecification request = given();

 // When:
 ResponseOptions response = given().spec(request).get("/users/1");

 // Then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.body().jsonPath().get("name")).isEqualTo("Alice");
 }
}

Spring Boot Advanced

Alexander Erben 50

Spring Cloud Contract: Consumer-Seite (Stub)

Der Producer veröffentlicht einen Stub (JAR mit WireMock-Mappings).
Der Consumer nutzt diesen Stub in seinen Tests:

@SpringBootTest
@AutoConfigureStubRunner(
 ids = "com.example:user-service:+:stubs:8080",
 stubsMode = StubRunnerProperties.StubsMode.LOCAL
)
class UserClientTest {

 @Autowired
 private UserClient userClient;

 @Test
 void shouldFetchUser() {
 // Stub antwortet gemäß Contract
 User user = userClient.getUser(1L);

 assertThat(user.getName()).isEqualTo("Alice");

Spring Boot Advanced

Alexander Erben 51

