Spring Boot Advanced

Spring Boot Data & Persistence

Alexander Erben

Spring Boot Advanced

In diesem Modul

o JPA/EntityManager, Repository-Pattern
e JPQL, Fetch Joins und EntityGraph

Projections/DTOs, Auditing, Transaktionen (Propagation/lsolation)

Database Migrations (Flyway, Liguibase)
e Native Queries & Specification API
NoSQL: MongoDB, Redis, Distributed Locks

Alexander Erben

Spring Boot Advanced

JPA-Architektur

Spring Data legt eine Abstraktionsschicht tiber den JPA Provider (meist Hibernate).

1. JPA (Java Persistence API): Standard-Interfaces wie EntityManager .

2. Hibernate: Die wichtigste Implementierung.

3. Spring Data JPA: Abstraktionsschicht Gber Hibernate mit Repositories, die
Boilerplate-Code reduziert.

Alexander Erben

Spring Boot Advanced

Der Entity Manager

Auch wenn wir meistens Repositories nutzen, arbeitet im Hintergrund immer der
EntityManager .

@PersistenceContext
private EntityManager em;

public User save(User user) {
em.persist(user); // Objekt in den Persistence Context aufnehmen
return user;

}

Der Persistence Context ist ein First-Level Cache. Anderungen an Managed Entities
werden beim Transaktionsende automatisch in die DB geschrieben ("Dirty Checking").

Alexander Erben

Spring Boot Advanced

Repository Pattern

Statt DAOs manuell zu schreiben, definieren wir Interfaces.

// Erbt CRUD-Methoden (save, findById, delete...)
public interface UserRepository extends JpaRepository<uUser, Long> {

// Derived Query Methods (werden aus dem Methodennamen generiert)
List<User> findByLastnameAndActiveTrue(String lastname);

// JPQL Query
@Query("SELECT u FROM User u WHERE u.email LIKE %:domain')
List<User> findByEmailDomain(@Param('"domain") String domain);

Alexander Erben

Spring Boot Advanced

JPQL - Die Abfragesprache von JPA

e JPQL (Java Persistence Query Language) ist eine objektorientierte

Abfragesprache, dhnlich zu SQL, aber operiert auf Entities und ithren Attributen
statt auf Tabellen und Spalten.

e Der JPA Provider (z. B. Hibernate) Ubersetzt JPQL zur Laufzeit in vendor-
spezifisches SQL.

e Vortell: Queries bleiben portabel und eng an das Domain-Modell gekoppelt.

Alexander Erben

Spring Boot Advanced

Grundsyntax einer JPQL-Query

@Query("SELECT u FROM User u WHERE u.active = true")
List<User> findActiveUsers();

Parametrisierung

@Query("SELECT u FROM User u WHERE u.email = :email')
User findByEmail(@Param("email") String email);

Inner Join

@Query("SELECT o FROM Order o JOIN o.customer ¢ WHERE c.status = 'PREMIUM'")
List<Order> findOrdersOfPremiumCustomers();

Fetch Join

@Query("SELECT u FROM User u JOIN FETCH u.roles")
List<User> findAllwithRoles();

Alexander Erben

Spring Boot Advanced

Eager Loading

Alexander Erben

Spring Boot Advanced

Das N+1-Problem

Das N+1-Problem beschreibt, was haufig beim Iterieren Uber Entities passiert, wenn sie
selbst eine 1:N-Relation haben.
Man ladt zum Beispiel 100 User in einer Query. Dann greift man auf
user.getAddresses() zu, welches standardmallig lazy geschieht.

e Flr jeden der 100 User wird ein neues SELECT gefeuert.

e 1+ 100 =101 Queries.

e Das ist ein Performance-Killer.

Alexander Erben

Spring Boot Advanced

Losung 1: @EntityGraph

Deklaratives Eager-Loading im Repository.

@EntityGraph(attributePaths = {"addresses"})
List<User> findAll();

Losung 2: JPQL Fetch Join

Ladt ebenfalls den ganzen Graph.

@Query("SELECT u FROM User u JOIN FETCH u.addresses")
List<User> findAllWithAddresses();

Alexander Erben

10

Spring Boot Advanced

Projections

Alexander Erben

11

Spring Boot Advanced

Projections mit DTOs

e Projektionen laden nur Teile der Entities.

e Daflir schreibt man neue Klassen, idealerweise als Record, welche die Projektion
aufnehmen.

e Dafur gibt es drei Optionen:
o Interface Projection

o Class Projection
o JPQL Projection

Alexander Erben

12

Spring Boot Advanced

Interface Projection

Spring generiert zur Laufzeit einen Proxy.

public interface UserView {
String getUsername();
// 0Open Projection (SpEL)
@value("#{target.firstname + '
String getFullName();

Alexander Erben

' + target.lastname}")

13

Spring Boot Advanced

Class Projection (Records)

Type-safe und performant (selektiert nur bendtigte Spalten im SQL).

public record UserDto(String username, String email) {}
// Im Repo:
List<UserDto> findByActiveTrue();

Alexander Erben

14

Spring Boot Advanced

JPQL-Projektion

@Query(miin
SELECT new com.example.UserSummary(u.username, u.email)
FROM User u
WHERE u.active = true

min)

List<UserSummary> findActiveUserSummaries(),

Alexander Erben 15

Spring Boot Advanced

Auditing

Automatisches Tracking von Anderungen.

1. @EnableJpaAuditing in der Config.

2. Entity anpassen:

@EntityListeners(AuditingEntitylListener.class)
public class User {

@CreatedDate

private LocalDateTime createdAt;

@LastModifiedBy
private String lastModifiedBy;

Alexander Erben

16

Spring Boot Advanced

Transaktionsmanagement

Alexander Erben

17

Spring Boot Advanced

Basics

In Spring markiert @Transactional Methoden, die atomar ausgefihrt werden sollen.

e Default: Rollback nur bei RuntimeException (unchecked).
e Checked Exceptions (z.B. 10Exception) l0sen standardmaliig keinen Rollback

aus!
-> @Transactional(rollbackFor = Exception.class)

Alexander Erben

18

Spring Boot Advanced
Propagation

Wie verhalten sich Transaktionen bei verschachtelten Service-Aufrufen?

e REQUIRED (Default): Nutze vorhandene TX, sonst neue starten.

e REQUIRES_NEW: Starte immer eine neue TX (pausiere die alte). Wichtig far
Logs, die trotz Rollback geschrieben werden sollen.

e SUPPORTS: Laufe in TX wenn da, sonst ohne.
« MANDATORY: Wirf Exception, wenn keine TX da ist.

@Service
public class OrderService {

private final OrderRepository orders;
private final AuditService audit;
private final PaymentService payments;

@Transactional // REQUIRED als default: gemeinsamer Commit/Rollback
public void place(Order order) {
orders.save(order);
payments.charge(order); // Exception - alles rollt zurick
audit.logOrder(order);

}

Alexander Egbenmsactional
public void placeWithAuditSafe(Order order) {
orders.save(order):

19

Spring Boot Advanced

Isolation Levels

« READ_COMMITTED: Standard. Verhindert Dirty Reads.
e REPEATABLE_READ: Verhindert Non-Repeatable Reads.
e SERIALIZABLE: Sperrt Tabellen/Rows aggressiv. Sicher, aber langsam.

Alexander Erben

20

Spring Boot Advanced

@Service
public class InventoryService {

private final ProductRepository products;

// Sicher gegen Non-Repeatable Reads (z.B. doppelte Reservierung)
@Transactional(isolation = Isolation.REPEATABLE_READ)
public void reserve(String sku, int qty) {
Product p = products.findBySkuForUpdate(sku) // Query mit PESSIMISTIC_WRITE
.0rElseThrow();
if (p.getStock() < qty) throw new IllegalStateException('"Not enough stock");
p.decreaseStock(qty);
}

// Strenger: konsistente Prifung lUber mehrere Zeilen (Phantoms vermeiden)
// Beispiel: Gesamtsumme aller Reservierungen darf den Bestand nicht Ubersteigen.
@Transactional(isolation = Isolation.SERIALIZABLE)
public void placeBulkOrder(String sku, int requested) {
int alreadyReserved = products.sumReservations(sku); // SELECT SUM(...) FROM reservations WHERE sku=?
Product p = products.findBySkuForUpdate(sku).orElseThrow();
if (alreadyReserved + requested > p.getStock()) {
throw new IllegalStateException("Overbooking prevented");

products.insertReservation(sku, requested); // eigene Tabelle/Row

}

public interface ProductRepository extends JpaRepository<Product, Long> {
@Lock (LockModeType.PESSIMISTIC_WRITE)
@Query("select p from Product p where p.sku = :sku")
Optional<Product> findBySkuForUpdate(@Param('"sku") String sku);

@Query("select coalesce(sum(r.qty),0) from Reservation r where r.sku = :sku")
int sumReservations(@Param("sku") String sku);

@Modifying

@Query("insert into Reservation(sku, qty) values (:sku, :qty)")
void insertReservation(@Param("sku") String sku, @Param('"qty") int qty);

Alexander Erben

21

Spring Boot Advanced

Database Migrations

Alexander Erben

22

Spring Boot Advanced

Warum Database Migrations?

e Versionierung: Schema-Anderungen sind nachvollziehbar (Git).
 Reproduzierbarkeit: Gleiche Migration auf Dev, Test, Prod.
o Team-Arbeit: Konflikte bei Schema-Anderungen werden sichtbar.

e Rollback: (Eingeschrankt) Zuriickrollen von Anderungen maoglich.

Tools: Flyway, Liguibase

Alexander Erben

23

Spring Boot Advanced

Flyway vs. Liquibase

Feature
Format
Lernkurve
Rollback
DB-Agnostisch

Spring Boot

Alexander Erben

Flyway
SQL, Java
Einfach
Manuell (Pro: automatisch)
Nein (SQL-basiert)
Auto-Config

Liquibase
XML, YAML, JSON, SQL
Komplexer
Automatisch generierbar
Ja (abstraktes Format)

Auto-Config

24

Spring Boot Advanced

Flyway Setup
Dependency: org.flywaydb:flyway-core

Struktur:

src/main/resources/

L— db/migration/

— V1_ create_users_table.sql
— V2__add_email_column.sqgl
—— V3__create_orders_table.sqgl

Namenskonvention: V{version}__ {description}.sql

Alexander Erben

25

Spring Boot Advanced
Flyway Migration Beispiel
V1 _ create_users_table.sql:

CREATE TABLE users (
1d BIGSERIAL PRIMARY KEY,
username VARCHAR(100) NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)i
CREATE INDEX 1idx_users_username ON users(username);

V2_add_email_column.sql:

ALTER TABLE users ADD COLUMN email VARCHAR(255);
UPDATE users SET emall = username || '@example.com' WHERE email IS NULL;
ALTER TABLE users ALTER COLUMN email SET NOT NULL;

Alexander Erben

26

Spring Boot Advanced

Flyway Konfiguration

spring:
flyway:
enabled: true
locations: classpath:db/migration
baseline-on-migrate: true # FUr bestehende DBs
validate-on-migrate: true # Priuft Checksummen

FUr verschiedene Umgebungen

placeholders:
schema: ${DB_SCHEMA:public}

Alexander Erben

27

Spring Boot Advanced

Liquibase Setup

Dependency: org.liquibase:liquibase-core

Struktur:

src/main/resources/

L— db/changelog/

—— db.changelog-master.yaml
—— changes/

—— 00l1-create-users.yaml
—— 002-add-orders.yaml

Alexander Erben

28

Spring Boot Advanced

Liquibase Changelog Beispiel
db.changelog-master.yaml:

databaseChangelLog:
- 1nclude:
file: db/changelog/changes/001-create-users.yaml
- 1nclude:
file: db/changelog/changes/002-add-orders.yaml

Alexander Erben

29

Spring Boot Advanced

Liquibase Change Set

001-create-users.yaml:

databaseChangelLog:
- changeSet:
id: 1
author: aerben
changes:
- createTable:
tableName: users
columns:
- column:
name: 1id
type: BIGINT
autoIncrement: true
constraints:
primaryKey: true
- column:
name: username
type: VARCHAR(100)
constraints:
nullable: false
unique: true
rollback:
- dropTable:
tableName: users

Alexander Erben

30

Spring Boot Advanced

Native Queries

Alexander Erben

31

Spring Boot Advanced

@Query mit nativeQuery = true
Manchmal reicht JPQL nicht aus — dann braucht man echtes SQL.

public interface ProductRepository extends JpaRepository<Product,

@Query(value =
SELECT * FROM products p
WHERE p.price < :maxPrice
AND p.category_id IN (
SELECT c.i1id FROM categories c¢c WHERE c.active = true
)

ORDER BY p.created_at DESC
LIMIT :limit
" nativeQuery = true)

List<Product> findCheapProductsInActiveCategories(
@Param("maxPrice") BigDecimal maxPrice,
@Param("limit") int limit

)

Alexandér Erben

Long> {

32

Spring Boot Advanced

Native Query: Wann verwenden?

Szenario Empfehlung

DB-spezifische Funktionen (z.B. JSONB , ARRAY) Native Query

Window Functions (ROW_NUMBER , RANK) Native Query

Komplexe Subqueries Native Query

Einfache CRUD JPQL oder Derived Query
Portabilitat wichtig JPQL

Achtung: Native Queries umgehen den Entity-Cache!

Alexander Erben

33

Spring Boot Advanced

Native Query mit Projektion

public interface OrderStatistics {
String getStatus();
Long getCount();
BigDecimal getTotalAmount();

}

public interface OrderRepository extends JpaRepository<Order, Long> {

@Query(value = """
SELECT status, COUNT(*) as count, SUM(amount) as totalAmount
FROM orders
WHERE created_at >= :since
GROUP BY status
" nativeQuery = true)
List<OrderStatistics> getOrderStatistics(@Param('"since") LocalDate since);

Alexander Erben

34

Spring Boot Advanced

Specification API

Alexander Erben

35

Spring Boot Advanced

Dynamische Queries mit Specifications

Die Specification APl ermoglicht dynamische, typsichere Queries zur Laufzeit.

Problem:

// So nicht! Kombinatorische Explosion von Methoden
findByStatusAndCategoryAndPriceGreaterThan(...)
findByStatusAndCategory(...)

findByStatus(...)
findByCategoryAndPriceGreaterThan(...)

Losung: Specifications kombinieren!

Alexander Erben

36

Spring Boot Advanced

Repository erweitern

public interface ProductRepository extends
JpaRepository<Product, Long>,
JpaSpecificationExecutor<Product> { // <-- Hinzuflgen

// Kelne zusatzlichen Methoden ndtig

Alexander Erben

37

Spring Boot Advanced

Specifications definieren

public class ProductSp

public static Spec
return (root,
status ==

}

public static Spec
return (root,
categorylId

}

public static Spec
return (root,

if (min ==

if (min ==

if (max ==

return cb.

};

Alexander Erben

ecifications {

ification<Product> hasStatus(ProductStatus status) {
query, cb) ->
null ? null : cb.equal(root.get("status"), status);

ification<Product> inCategory(Long categoryId) {
query, cb) ->
== null ? null : cb.equal(root.get("category").get("1d"), categoryId),

ification<Product> priceBetween(BigDecimal min, BigDecimal max) {
query, cb) -> {

null &% max == null) return null;

null) return cb.lessThanOrEqualTo(root.get("price"), max);

null) return cb.greaterThanOrEqualTo(root.get("price"), min);
between(root.get("price"), min, max);

38

Spring Boot Advanced

Specifications kombinieren

@Service
public class ProductService {

public List<Product> search(ProductSearchCriteria criteria) {

Specification<Product> spec = Specification
.where(ProductSpecifications.hasStatus(criteria.getStatus()))
.and(ProductSpecifications.inCategory(criteria.getCategoryId()))
.and(ProductSpecifications.priceBetween(criteria.getMinPrice(), criteria.getMaxPrice()));

return productRepository.findAll(spec, Sort.by("name"));

Die Specifications werden nur angewendet, wenn der Parameter nicht null ist!

Alexander Erben

39

Spring Boot Advanced

Advanced-Themen zu NoSQL

Alexander Erben

40

Spring Boot Advanced

MongoDB: Optimistic Locking
Verhindert "Lost Updates" in verteilten Systemen ohne harte DB-Locks.

@Document
public class Product {
@Id String 1id,;
@Version Long version; // Spring Data priuft und inkrementiert dies

Wenn zwei User gleichzeitig speichern, gewinnt der erste. Der zweite bekommt eine

OptimisticlLockingFailureException .

Alexander Erben

41

Spring Boot Advanced

Redis als Cache

Caching beschleunigt Lesezugriffe dramatisch.

@Service
public class PricingService {

@Cacheable(value = "prices", key = "#productId")
public BigDecimal getPrice(String productId) {
// Teure Berechnung oder DB-Call
return calculatePrice(productId);

}

@CacheEvict(value = "prices", key = "#productId")

public void updatePrice(String productId, BigDecimal newPrice) {
// Update Logik

ks

Alexander Erben

42

Spring Boot Advanced

Distributed Locks (ShedLock)

Szenario: Eine @Scheduled Methode soll in einem Cluster (3 Instanzen) nur einmal

ausgefuhrt werden.

Losung: ShedLock (nutzt DB oder Redis als Lock-Provider).

@SCheduled(Cron = "Q @ * * * *n)
@schedulerLock(name = "dailyReport", lockAtMostFor = "iem")

public void generateDailyReport() {
// Lauft garantiert nur auf einer Instanz gleichzeitig
¥

Alexander Erben

43

Spring Boot Advanced

Alexander Erben

44

