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In diesem Modul

o JPA/EntityManager, Repository-Pattern
e JPQL, Fetch Joins und EntityGraph

Projections/DTOs, Auditing, Transaktionen (Propagation/lsolation)

Database Migrations (Flyway, Liguibase)
e Native Queries & Specification API
NoSQL: MongoDB, Redis, Distributed Locks
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JPA-Architektur

Spring Data legt eine Abstraktionsschicht tiber den JPA Provider (meist Hibernate).

1. JPA (Java Persistence API): Standard-Interfaces wie EntityManager .

2. Hibernate: Die wichtigste Implementierung.

3. Spring Data JPA: Abstraktionsschicht Gber Hibernate mit Repositories, die
Boilerplate-Code reduziert.
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Der Entity Manager

Auch wenn wir meistens Repositories nutzen, arbeitet im Hintergrund immer der
EntityManager .

@PersistenceContext
private EntityManager em;

public User save(User user) {
em.persist(user); // Objekt in den Persistence Context aufnehmen
return user;

}

Der Persistence Context ist ein First-Level Cache. Anderungen an Managed Entities
werden beim Transaktionsende automatisch in die DB geschrieben ("Dirty Checking").
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Repository Pattern

Statt DAOs manuell zu schreiben, definieren wir Interfaces.

// Erbt CRUD-Methoden (save, findById, delete...)
public interface UserRepository extends JpaRepository<uUser, Long> {

// Derived Query Methods (werden aus dem Methodennamen generiert)
List<User> findByLastnameAndActiveTrue(String lastname);

// JPQL Query
@Query("SELECT u FROM User u WHERE u.email LIKE %:domain')
List<User> findByEmailDomain(@Param('"domain") String domain);
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JPQL - Die Abfragesprache von JPA

e JPQL (Java Persistence Query Language) ist eine objektorientierte

Abfragesprache, dhnlich zu SQL, aber operiert auf Entities und ithren Attributen
statt auf Tabellen und Spalten.

e Der JPA Provider (z. B. Hibernate) Ubersetzt JPQL zur Laufzeit in vendor-
spezifisches SQL.

e Vortell: Queries bleiben portabel und eng an das Domain-Modell gekoppelt.
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Grundsyntax einer JPQL-Query

@Query("SELECT u FROM User u WHERE u.active = true")
List<User> findActiveUsers();

Parametrisierung

@Query("SELECT u FROM User u WHERE u.email = :email')
User findByEmail(@Param("email") String email);

Inner Join

@Query("SELECT o FROM Order o JOIN o.customer ¢ WHERE c.status = 'PREMIUM'")
List<Order> findOrdersOfPremiumCustomers();

Fetch Join

@Query("SELECT u FROM User u JOIN FETCH u.roles")
List<User> findAllwithRoles();
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Eager Loading
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Das N+1-Problem

Das N+1-Problem beschreibt, was haufig beim Iterieren Uber Entities passiert, wenn sie
selbst eine 1:N-Relation haben.
Man ladt zum Beispiel 100 User in einer Query. Dann greift man auf
user.getAddresses() zu, welches standardmallig lazy geschieht.

e Flr jeden der 100 User wird ein neues SELECT gefeuert.

e 1+ 100 =101 Queries.

e Das ist ein Performance-Killer.
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Losung 1: @EntityGraph

Deklaratives Eager-Loading im Repository.

@EntityGraph(attributePaths = {"addresses"})
List<User> findAll();

Losung 2: JPQL Fetch Join

Ladt ebenfalls den ganzen Graph.

@Query("SELECT u FROM User u JOIN FETCH u.addresses")
List<User> findAllWithAddresses();
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Projections

Alexander Erben
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Projections mit DTOs

e Projektionen laden nur Teile der Entities.

e Daflir schreibt man neue Klassen, idealerweise als Record, welche die Projektion
aufnehmen.

e Dafur gibt es drei Optionen:
o Interface Projection

o Class Projection
o JPQL Projection

Alexander Erben
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Interface Projection

Spring generiert zur Laufzeit einen Proxy.

public interface UserView {
String getUsername();
// 0Open Projection (SpEL)
@value("#{target.firstname + '
String getFullName();
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Class Projection (Records)

Type-safe und performant (selektiert nur bendtigte Spalten im SQL).

public record UserDto(String username, String email) {}
// Im Repo:
List<UserDto> findByActiveTrue();

Alexander Erben
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JPQL-Projektion

@Query( miin
SELECT new com.example.UserSummary(u.username, u.email)
FROM User u
WHERE u.active = true

min )

List<UserSummary> findActiveUserSummaries(),

Alexander Erben 15



Spring Boot Advanced

Auditing

Automatisches Tracking von Anderungen.

1. @EnableJpaAuditing in der Config.

2. Entity anpassen:

@EntityListeners(AuditingEntitylListener.class)
public class User {

@CreatedDate

private LocalDateTime createdAt;

@LastModifiedBy
private String lastModifiedBy;
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Transaktionsmanagement
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Basics

In Spring markiert @Transactional Methoden, die atomar ausgefihrt werden sollen.

e Default: Rollback nur bei RuntimeException (unchecked).
e Checked Exceptions (z.B. 10Exception ) l0sen standardmaliig keinen Rollback

aus!
-> @Transactional(rollbackFor = Exception.class)
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Propagation

Wie verhalten sich Transaktionen bei verschachtelten Service-Aufrufen?

e REQUIRED (Default): Nutze vorhandene TX, sonst neue starten.

e REQUIRES_NEW: Starte immer eine neue TX (pausiere die alte). Wichtig far
Logs, die trotz Rollback geschrieben werden sollen.

e SUPPORTS: Laufe in TX wenn da, sonst ohne.
« MANDATORY: Wirf Exception, wenn keine TX da ist.

@Service
public class OrderService {

private final OrderRepository orders;
private final AuditService audit;
private final PaymentService payments;

@Transactional // REQUIRED als default: gemeinsamer Commit/Rollback
public void place(Order order) {
orders.save(order);
payments.charge(order); // Exception - alles rollt zurick
audit.logOrder(order);

}

Alexander Egbenmsactional
public void placeWithAuditSafe(Order order) {
orders.save(order):
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Isolation Levels

« READ_COMMITTED: Standard. Verhindert Dirty Reads.
e REPEATABLE_READ: Verhindert Non-Repeatable Reads.
e SERIALIZABLE: Sperrt Tabellen/Rows aggressiv. Sicher, aber langsam.
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@Service
public class InventoryService {

private final ProductRepository products;

// Sicher gegen Non-Repeatable Reads (z.B. doppelte Reservierung)
@Transactional(isolation = Isolation.REPEATABLE_READ)
public void reserve(String sku, int qty) {
Product p = products.findBySkuForUpdate(sku) // Query mit PESSIMISTIC_WRITE
.0rElseThrow();
if (p.getStock() < qty) throw new IllegalStateException('"Not enough stock");
p.decreaseStock(qty);
}

// Strenger: konsistente Prifung lUber mehrere Zeilen (Phantoms vermeiden)
// Beispiel: Gesamtsumme aller Reservierungen darf den Bestand nicht Ubersteigen.
@Transactional(isolation = Isolation.SERIALIZABLE)
public void placeBulkOrder(String sku, int requested) {
int alreadyReserved = products.sumReservations(sku); // SELECT SUM(...) FROM reservations WHERE sku=?
Product p = products.findBySkuForUpdate(sku).orElseThrow();
if (alreadyReserved + requested > p.getStock()) {
throw new IllegalStateException("Overbooking prevented");

products.insertReservation(sku, requested); // eigene Tabelle/Row

}

public interface ProductRepository extends JpaRepository<Product, Long> {
@Lock (LockModeType.PESSIMISTIC_WRITE)
@Query("select p from Product p where p.sku = :sku")
Optional<Product> findBySkuForUpdate(@Param('"sku") String sku);

@Query("select coalesce(sum(r.qty),0) from Reservation r where r.sku = :sku")
int sumReservations(@Param("sku") String sku);

@Modifying

@Query("insert into Reservation(sku, qty) values (:sku, :qty)")
void insertReservation(@Param("sku") String sku, @Param('"qty") int qty);
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Database Migrations

Alexander Erben
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Warum Database Migrations?

e Versionierung: Schema-Anderungen sind nachvollziehbar (Git).
 Reproduzierbarkeit: Gleiche Migration auf Dev, Test, Prod.
o Team-Arbeit: Konflikte bei Schema-Anderungen werden sichtbar.

e Rollback: (Eingeschrankt) Zuriickrollen von Anderungen maoglich.

Tools: Flyway, Liguibase

Alexander Erben
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Flyway vs. Liquibase

Feature
Format
Lernkurve
Rollback
DB-Agnostisch

Spring Boot

Alexander Erben

Flyway
SQL, Java
Einfach
Manuell (Pro: automatisch)
Nein (SQL-basiert)
Auto-Config

Liquibase
XML, YAML, JSON, SQL
Komplexer
Automatisch generierbar
Ja (abstraktes Format)

Auto-Config
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Flyway Setup
Dependency: org.flywaydb:flyway-core

Struktur:

src/main/resources/

L— db/migration/

— V1_ create_users_table.sql
— V2__add_email_column.sqgl
—— V3__create_orders_table.sqgl

Namenskonvention: V{version}__ {description}.sql

Alexander Erben
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Flyway Migration Beispiel
V1 _ create_users_table.sql:

CREATE TABLE users (
1d BIGSERIAL PRIMARY KEY,
username VARCHAR(100) NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)i
CREATE INDEX 1idx_users_username ON users(username);

V2_add_email_column.sql:

ALTER TABLE users ADD COLUMN email VARCHAR(255);
UPDATE users SET emall = username || '@example.com' WHERE email IS NULL;
ALTER TABLE users ALTER COLUMN email SET NOT NULL;

Alexander Erben
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Flyway Konfiguration

spring:
flyway:
enabled: true
locations: classpath:db/migration
baseline-on-migrate: true # FUr bestehende DBs
validate-on-migrate: true # Priuft Checksummen

# FUr verschiedene Umgebungen

# placeholders:
# schema: ${DB_SCHEMA:public}
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Liquibase Setup

Dependency: org.liquibase:liquibase-core

Struktur:

src/main/resources/

L— db/changelog/

—— db.changelog-master.yaml
—— changes/

—— 00l1-create-users.yaml
—— 002-add-orders.yaml

Alexander Erben
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Liquibase Changelog Beispiel
db.changelog-master.yaml:

databaseChangelLog:
- 1nclude:
file: db/changelog/changes/001-create-users.yaml
- 1nclude:
file: db/changelog/changes/002-add-orders.yaml

Alexander Erben
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Liquibase Change Set

001-create-users.yaml:

databaseChangelLog:
- changeSet:
id: 1
author: aerben
changes:
- createTable:
tableName: users
columns:
- column:
name: 1id
type: BIGINT
autoIncrement: true
constraints:
primaryKey: true
- column:
name: username
type: VARCHAR(100)
constraints:
nullable: false
unique: true
rollback:
- dropTable:
tableName: users
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Native Queries

Alexander Erben
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@Query mit nativeQuery = true
Manchmal reicht JPQL nicht aus — dann braucht man echtes SQL.

public interface ProductRepository extends JpaRepository<Product,

@Query(value =
SELECT * FROM products p
WHERE p.price < :maxPrice
AND p.category_id IN (
SELECT c.i1id FROM categories c¢c WHERE c.active = true
)

ORDER BY p.created_at DESC
LIMIT :limit
" nativeQuery = true)

List<Product> findCheapProductsInActiveCategories(
@Param("maxPrice") BigDecimal maxPrice,
@Param("limit") int limit

)

Alexandér Erben

Long> {
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Native Query: Wann verwenden?

Szenario Empfehlung

DB-spezifische Funktionen (z.B. JSONB , ARRAY ) Native Query

Window Functions ( ROW_NUMBER , RANK ) Native Query

Komplexe Subqueries Native Query

Einfache CRUD JPQL oder Derived Query
Portabilitat wichtig JPQL

Achtung: Native Queries umgehen den Entity-Cache!

Alexander Erben
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Native Query mit Projektion

public interface OrderStatistics {
String getStatus();
Long getCount();
BigDecimal getTotalAmount();

}

public interface OrderRepository extends JpaRepository<Order, Long> {

@Query(value = """
SELECT status, COUNT(*) as count, SUM(amount) as totalAmount
FROM orders
WHERE created_at >= :since
GROUP BY status
" nativeQuery = true)
List<OrderStatistics> getOrderStatistics(@Param('"since") LocalDate since);
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Specification API

Alexander Erben
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Dynamische Queries mit Specifications

Die Specification APl ermoglicht dynamische, typsichere Queries zur Laufzeit.

Problem:

// So nicht! Kombinatorische Explosion von Methoden
findByStatusAndCategoryAndPriceGreaterThan(...)
findByStatusAndCategory(...)

findByStatus(...)
findByCategoryAndPriceGreaterThan(...)

Losung: Specifications kombinieren!

Alexander Erben
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Repository erweitern

public interface ProductRepository extends
JpaRepository<Product, Long>,
JpaSpecificationExecutor<Product> { // <-- Hinzuflgen

// Kelne zusatzlichen Methoden ndtig

Alexander Erben
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Specifications definieren

public class ProductSp

public static Spec
return (root,
status ==

}

public static Spec
return (root,
categorylId

}

public static Spec
return (root,

if (min ==

if (min ==

if (max ==

return cb.

};
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ecifications {

ification<Product> hasStatus(ProductStatus status) {
query, cb) ->
null ? null : cb.equal(root.get("status"), status);

ification<Product> inCategory(Long categoryId) {
query, cb) ->
== null ? null : cb.equal(root.get("category").get("1d"), categoryId),

ification<Product> priceBetween(BigDecimal min, BigDecimal max) {
query, cb) -> {

null &% max == null) return null;

null) return cb.lessThanOrEqualTo(root.get("price"), max);

null) return cb.greaterThanOrEqualTo(root.get("price"), min);
between(root.get("price"), min, max);
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Specifications kombinieren

@Service
public class ProductService {

public List<Product> search(ProductSearchCriteria criteria) {

Specification<Product> spec = Specification
.where(ProductSpecifications.hasStatus(criteria.getStatus()))
.and(ProductSpecifications.inCategory(criteria.getCategoryId()))
.and(ProductSpecifications.priceBetween(criteria.getMinPrice(), criteria.getMaxPrice()));

return productRepository.findAll(spec, Sort.by("name"));

Die Specifications werden nur angewendet, wenn der Parameter nicht null ist!

Alexander Erben
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Advanced-Themen zu NoSQL

Alexander Erben
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MongoDB: Optimistic Locking
Verhindert "Lost Updates" in verteilten Systemen ohne harte DB-Locks.

@Document
public class Product {
@Id String 1id,;
@Version Long version; // Spring Data priuft und inkrementiert dies

Wenn zwei User gleichzeitig speichern, gewinnt der erste. Der zweite bekommt eine

OptimisticlLockingFailureException .

Alexander Erben
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Redis als Cache

Caching beschleunigt Lesezugriffe dramatisch.

@Service
public class PricingService {

@Cacheable(value = "prices", key = "#productId")
public BigDecimal getPrice(String productId) {
// Teure Berechnung oder DB-Call
return calculatePrice(productId);

}

@CacheEvict(value = "prices", key = "#productId")

public void updatePrice(String productId, BigDecimal newPrice) {
// Update Logik

ks
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Distributed Locks (ShedLock)

Szenario: Eine @Scheduled Methode soll in einem Cluster (3 Instanzen) nur einmal

ausgefuhrt werden.

Losung: ShedLock (nutzt DB oder Redis als Lock-Provider).

@SCheduled(Cron = "Q @ * * * *n)
@schedulerLock(name = "dailyReport", lockAtMostFor = "iem")

public void generateDailyReport() {
// Lauft garantiert nur auf einer Instanz gleichzeitig
¥
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