
Spring Boot Data & Persistence

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

JPA/EntityManager, Repository-Pattern

JPQL, Fetch Joins und EntityGraph

Projections/DTOs, Auditing, Transaktionen (Propagation/Isolation)

Database Migrations (Flyway, Liquibase)

Native Queries & Specification API

NoSQL: MongoDB, Redis, Distributed Locks

Spring Boot Advanced

Alexander Erben 2

JPA-Architektur

Spring Data legt eine Abstraktionsschicht über den JPA Provider (meist Hibernate).

1. JPA (Java Persistence API): Standard-Interfaces wie EntityManager .

2. Hibernate: Die wichtigste Implementierung.

3. Spring Data JPA: Abstraktionsschicht über Hibernate mit Repositories, die

Boilerplate-Code reduziert.

Spring Boot Advanced

Alexander Erben 3

Der Entity Manager

Auch wenn wir meistens Repositories nutzen, arbeitet im Hintergrund immer der
EntityManager .

@PersistenceContext
private EntityManager em;

public User save(User user) {
 em.persist(user); // Objekt in den Persistence Context aufnehmen
 return user;
}

Der Persistence Context ist ein First-Level Cache. Änderungen an Managed Entities
werden beim Transaktionsende automatisch in die DB geschrieben ("Dirty Checking").

Spring Boot Advanced

Alexander Erben 4

Repository Pattern

Statt DAOs manuell zu schreiben, definieren wir Interfaces.

// Erbt CRUD-Methoden (save, findById, delete...)
public interface UserRepository extends JpaRepository<User, Long> {

 // Derived Query Methods (werden aus dem Methodennamen generiert)
 List<User> findByLastnameAndActiveTrue(String lastname);

 // JPQL Query
 @Query("SELECT u FROM User u WHERE u.email LIKE %:domain")
 List<User> findByEmailDomain(@Param("domain") String domain);
}

Spring Boot Advanced

Alexander Erben 5

JPQL – Die Abfragesprache von JPA

JPQL (Java Persistence Query Language) ist eine objektorientierte

Abfragesprache, ähnlich zu SQL, aber operiert auf Entities und ihren Attributen
statt auf Tabellen und Spalten.

Der JPA Provider (z. B. Hibernate) übersetzt JPQL zur Laufzeit in vendor-

spezifisches SQL.

Vorteil: Queries bleiben portabel und eng an das Domain-Modell gekoppelt.

Spring Boot Advanced

Alexander Erben 6

Grundsyntax einer JPQL-Query

@Query("SELECT u FROM User u WHERE u.active = true")
List<User> findActiveUsers();

Parametrisierung

@Query("SELECT u FROM User u WHERE u.email = :email")
User findByEmail(@Param("email") String email);

Inner Join

@Query("SELECT o FROM Order o JOIN o.customer c WHERE c.status = 'PREMIUM'")
List<Order> findOrdersOfPremiumCustomers();

Fetch Join

@Query("SELECT u FROM User u JOIN FETCH u.roles")
List<User> findAllWithRoles();

Spring Boot Advanced

Alexander Erben 7

Eager Loading

Spring Boot Advanced

Alexander Erben 8

Das N+1-Problem

Das N+1-Problem beschreibt, was häufig beim Iterieren über Entities passiert, wenn sie
selbst eine 1:N-Relation haben.

Man lädt zum Beispiel 100 User in einer Query. Dann greift man auf
user.getAddresses() zu, welches standardmäßig lazy geschieht.

Für jeden der 100 User wird ein neues SELECT gefeuert.

1 + 100 = 101 Queries.

Das ist ein Performance-Killer.

Spring Boot Advanced

Alexander Erben 9

Lösung 1: @EntityGraph

Deklaratives Eager-Loading im Repository.

@EntityGraph(attributePaths = {"addresses"})
List<User> findAll();

Lösung 2: JPQL Fetch Join

Lädt ebenfalls den ganzen Graph.

@Query("SELECT u FROM User u JOIN FETCH u.addresses")
List<User> findAllWithAddresses();

Spring Boot Advanced

Alexander Erben 10

Projections

Spring Boot Advanced

Alexander Erben 11

Projections mit DTOs

Projektionen laden nur Teile der Entities.

Dafür schreibt man neue Klassen, idealerweise als Record, welche die Projektion

aufnehmen.

Dafür gibt es drei Optionen:

Interface Projection

Class Projection

JPQL Projection

Spring Boot Advanced

Alexander Erben 12

Interface Projection

Spring generiert zur Laufzeit einen Proxy.

public interface UserView {
 String getUsername();
 // Open Projection (SpEL)
 @Value("#{target.firstname + ' ' + target.lastname}")
 String getFullName();
}

Spring Boot Advanced

Alexander Erben 13

Class Projection (Records)

Type-safe und performant (selektiert nur benötigte Spalten im SQL).

public record UserDto(String username, String email) {}
// Im Repo:
List<UserDto> findByActiveTrue();

Spring Boot Advanced

Alexander Erben 14

JPQL-Projektion

@Query("""
 SELECT new com.example.UserSummary(u.username, u.email)
 FROM User u
 WHERE u.active = true
""")
List<UserSummary> findActiveUserSummaries();

Spring Boot Advanced

Alexander Erben 15

Auditing
Automatisches Tracking von Änderungen.

1. @EnableJpaAuditing in der Config.

2. Entity anpassen:

@EntityListeners(AuditingEntityListener.class)
public class User {
 @CreatedDate
 private LocalDateTime createdAt;

 @LastModifiedBy
 private String lastModifiedBy;
}

Spring Boot Advanced

Alexander Erben 16

Transaktionsmanagement

Spring Boot Advanced

Alexander Erben 17

Basics

In Spring markiert @Transactional Methoden, die atomar ausgeführt werden sollen.

Default: Rollback nur bei RuntimeException (unchecked).

Checked Exceptions (z.B. IOException) lösen standardmäßig keinen Rollback

aus!
-> @Transactional(rollbackFor = Exception.class)

Spring Boot Advanced

Alexander Erben 18

Propagation

Wie verhalten sich Transaktionen bei verschachtelten Service-Aufrufen?

REQUIRED (Default): Nutze vorhandene TX, sonst neue starten.

REQUIRES_NEW: Starte immer eine neue TX (pausiere die alte). Wichtig für

Logs, die trotz Rollback geschrieben werden sollen.

SUPPORTS: Laufe in TX wenn da, sonst ohne.

MANDATORY: Wirf Exception, wenn keine TX da ist.

@Service
public class OrderService {

 private final OrderRepository orders;
 private final AuditService audit;
 private final PaymentService payments;

 @Transactional // REQUIRED als default: gemeinsamer Commit/Rollback
 public void place(Order order) {
 orders.save(order);
 payments.charge(order); // Exception → alles rollt zurück
 audit.logOrder(order);
 }

 @Transactional
 public void placeWithAuditSafe(Order order) {
 orders.save(order);

Spring Boot Advanced

Alexander Erben 19

Isolation Levels

READ_COMMITTED: Standard. Verhindert Dirty Reads.

REPEATABLE_READ: Verhindert Non-Repeatable Reads.

SERIALIZABLE: Sperrt Tabellen/Rows aggressiv. Sicher, aber langsam.

Spring Boot Advanced

Alexander Erben 20

@Service
public class InventoryService {

 private final ProductRepository products;

 // Sicher gegen Non-Repeatable Reads (z.B. doppelte Reservierung)
 @Transactional(isolation = Isolation.REPEATABLE_READ)
 public void reserve(String sku, int qty) {
 Product p = products.findBySkuForUpdate(sku) // Query mit PESSIMISTIC_WRITE
 .orElseThrow();
 if (p.getStock() < qty) throw new IllegalStateException("Not enough stock");
 p.decreaseStock(qty);
 }

 // Strenger: konsistente Prüfung über mehrere Zeilen (Phantoms vermeiden)
 // Beispiel: Gesamtsumme aller Reservierungen darf den Bestand nicht übersteigen.
 @Transactional(isolation = Isolation.SERIALIZABLE)
 public void placeBulkOrder(String sku, int requested) {
 int alreadyReserved = products.sumReservations(sku); // SELECT SUM(...) FROM reservations WHERE sku=?
 Product p = products.findBySkuForUpdate(sku).orElseThrow();
 if (alreadyReserved + requested > p.getStock()) {
 throw new IllegalStateException("Overbooking prevented");
 }
 products.insertReservation(sku, requested); // eigene Tabelle/Row
 }
}

public interface ProductRepository extends JpaRepository<Product, Long> {
 @Lock(LockModeType.PESSIMISTIC_WRITE)
 @Query("select p from Product p where p.sku = :sku")
 Optional<Product> findBySkuForUpdate(@Param("sku") String sku);

 @Query("select coalesce(sum(r.qty),0) from Reservation r where r.sku = :sku")
 int sumReservations(@Param("sku") String sku);

 @Modifying
 @Query("insert into Reservation(sku, qty) values (:sku, :qty)")
 void insertReservation(@Param("sku") String sku, @Param("qty") int qty);
}

Spring Boot Advanced

Alexander Erben 21

Database Migrations

Spring Boot Advanced

Alexander Erben 22

Warum Database Migrations?

Versionierung: Schema-Änderungen sind nachvollziehbar (Git).

Reproduzierbarkeit: Gleiche Migration auf Dev, Test, Prod.

Team-Arbeit: Konflikte bei Schema-Änderungen werden sichtbar.

Rollback: (Eingeschränkt) Zurückrollen von Änderungen möglich.

Tools: Flyway, Liquibase

Spring Boot Advanced

Alexander Erben 23

Flyway vs. Liquibase

Feature Flyway Liquibase

Format SQL, Java XML, YAML, JSON, SQL

Lernkurve Einfach Komplexer

Rollback Manuell (Pro: automatisch) Automatisch generierbar

DB-Agnostisch Nein (SQL-basiert) Ja (abstraktes Format)

Spring Boot Auto-Config Auto-Config

Spring Boot Advanced

Alexander Erben 24

Flyway Setup

Dependency: org.flywaydb:flyway-core

Struktur:

src/main/resources/
└── db/migration/
 ├── V1__create_users_table.sql
 ├── V2__add_email_column.sql
 └── V3__create_orders_table.sql

Namenskonvention: V{version}__{description}.sql

Spring Boot Advanced

Alexander Erben 25

Flyway Migration Beispiel

V1__create_users_table.sql:

CREATE TABLE users (
 id BIGSERIAL PRIMARY KEY,
 username VARCHAR(100) NOT NULL UNIQUE,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

CREATE INDEX idx_users_username ON users(username);

V2__add_email_column.sql:

ALTER TABLE users ADD COLUMN email VARCHAR(255);
UPDATE users SET email = username || '@example.com' WHERE email IS NULL;
ALTER TABLE users ALTER COLUMN email SET NOT NULL;

Spring Boot Advanced

Alexander Erben 26

Flyway Konfiguration

spring:
 flyway:
 enabled: true
 locations: classpath:db/migration
 baseline-on-migrate: true # Für bestehende DBs
 validate-on-migrate: true # Prüft Checksummen

 # Für verschiedene Umgebungen
 # placeholders:
 # schema: ${DB_SCHEMA:public}

Spring Boot Advanced

Alexander Erben 27

Liquibase Setup

Dependency: org.liquibase:liquibase-core

Struktur:

src/main/resources/
└── db/changelog/
 ├── db.changelog-master.yaml
 ├── changes/
 │ ├── 001-create-users.yaml
 │ └── 002-add-orders.yaml

Spring Boot Advanced

Alexander Erben 28

Liquibase Changelog Beispiel

db.changelog-master.yaml:

databaseChangeLog:
 - include:
 file: db/changelog/changes/001-create-users.yaml
 - include:
 file: db/changelog/changes/002-add-orders.yaml

Spring Boot Advanced

Alexander Erben 29

Liquibase Change Set

001-create-users.yaml:

databaseChangeLog:
 - changeSet:
 id: 1
 author: aerben
 changes:
 - createTable:
 tableName: users
 columns:
 - column:
 name: id
 type: BIGINT
 autoIncrement: true
 constraints:
 primaryKey: true
 - column:
 name: username
 type: VARCHAR(100)
 constraints:
 nullable: false
 unique: true
 rollback:
 - dropTable:
 tableName: users

Spring Boot Advanced

Alexander Erben 30

Native Queries

Spring Boot Advanced

Alexander Erben 31

@Query mit nativeQuery = true

Manchmal reicht JPQL nicht aus – dann braucht man echtes SQL.

public interface ProductRepository extends JpaRepository<Product, Long> {

 @Query(value = """
 SELECT * FROM products p
 WHERE p.price < :maxPrice
 AND p.category_id IN (
 SELECT c.id FROM categories c WHERE c.active = true
)
 ORDER BY p.created_at DESC
 LIMIT :limit
 """, nativeQuery = true)
 List<Product> findCheapProductsInActiveCategories(
 @Param("maxPrice") BigDecimal maxPrice,
 @Param("limit") int limit
);
}

Spring Boot Advanced

Alexander Erben 32

Native Query: Wann verwenden?

Szenario Empfehlung

DB-spezifische Funktionen (z.B. JSONB , ARRAY) Native Query

Window Functions (ROW_NUMBER , RANK) Native Query

Komplexe Subqueries Native Query

Einfache CRUD JPQL oder Derived Query

Portabilität wichtig JPQL

Achtung: Native Queries umgehen den Entity-Cache!

Spring Boot Advanced

Alexander Erben 33

Native Query mit Projektion

public interface OrderStatistics {
 String getStatus();
 Long getCount();
 BigDecimal getTotalAmount();
}

public interface OrderRepository extends JpaRepository<Order, Long> {

 @Query(value = """
 SELECT status, COUNT(*) as count, SUM(amount) as totalAmount
 FROM orders
 WHERE created_at >= :since
 GROUP BY status
 """, nativeQuery = true)
 List<OrderStatistics> getOrderStatistics(@Param("since") LocalDate since);
}

Spring Boot Advanced

Alexander Erben 34

Specification API

Spring Boot Advanced

Alexander Erben 35

Dynamische Queries mit Specifications

Die Specification API ermöglicht dynamische, typsichere Queries zur Laufzeit.

Problem:

// So nicht! Kombinatorische Explosion von Methoden
findByStatusAndCategoryAndPriceGreaterThan(...)
findByStatusAndCategory(...)
findByStatus(...)
findByCategoryAndPriceGreaterThan(...)

Lösung: Specifications kombinieren!

Spring Boot Advanced

Alexander Erben 36

Repository erweitern

public interface ProductRepository extends
 JpaRepository<Product, Long>,
 JpaSpecificationExecutor<Product> { // <-- Hinzufügen

 // Keine zusätzlichen Methoden nötig
}

Spring Boot Advanced

Alexander Erben 37

Specifications definieren

public class ProductSpecifications {

 public static Specification<Product> hasStatus(ProductStatus status) {
 return (root, query, cb) ->
 status == null ? null : cb.equal(root.get("status"), status);
 }

 public static Specification<Product> inCategory(Long categoryId) {
 return (root, query, cb) ->
 categoryId == null ? null : cb.equal(root.get("category").get("id"), categoryId);
 }

 public static Specification<Product> priceBetween(BigDecimal min, BigDecimal max) {
 return (root, query, cb) -> {
 if (min == null && max == null) return null;
 if (min == null) return cb.lessThanOrEqualTo(root.get("price"), max);
 if (max == null) return cb.greaterThanOrEqualTo(root.get("price"), min);
 return cb.between(root.get("price"), min, max);
 };
 }
}

Spring Boot Advanced

Alexander Erben 38

Specifications kombinieren

@Service
public class ProductService {

 public List<Product> search(ProductSearchCriteria criteria) {
 Specification<Product> spec = Specification
 .where(ProductSpecifications.hasStatus(criteria.getStatus()))
 .and(ProductSpecifications.inCategory(criteria.getCategoryId()))
 .and(ProductSpecifications.priceBetween(criteria.getMinPrice(), criteria.getMaxPrice()));

 return productRepository.findAll(spec, Sort.by("name"));
 }
}

Die Specifications werden nur angewendet, wenn der Parameter nicht null ist!

Spring Boot Advanced

Alexander Erben 39

Advanced-Themen zu NoSQL

Spring Boot Advanced

Alexander Erben 40

MongoDB: Optimistic Locking

Verhindert "Lost Updates" in verteilten Systemen ohne harte DB-Locks.

@Document
public class Product {
 @Id String id;
 @Version Long version; // Spring Data prüft und inkrementiert dies
}

Wenn zwei User gleichzeitig speichern, gewinnt der erste. Der zweite bekommt eine
OptimisticLockingFailureException .

Spring Boot Advanced

Alexander Erben 41

Redis als Cache

Caching beschleunigt Lesezugriffe dramatisch.

@Service
public class PricingService {

 @Cacheable(value = "prices", key = "#productId")
 public BigDecimal getPrice(String productId) {
 // Teure Berechnung oder DB-Call
 return calculatePrice(productId);
 }

 @CacheEvict(value = "prices", key = "#productId")
 public void updatePrice(String productId, BigDecimal newPrice) {
 // Update Logik
 }
}

Spring Boot Advanced

Alexander Erben 42

Distributed Locks (ShedLock)

Szenario: Eine @Scheduled Methode soll in einem Cluster (3 Instanzen) nur einmal
ausgeführt werden.

Lösung: ShedLock (nutzt DB oder Redis als Lock-Provider).

@Scheduled(cron = "0 0 * * * *")
@SchedulerLock(name = "dailyReport", lockAtMostFor = "10m")
public void generateDailyReport() {
 // Läuft garantiert nur auf einer Instanz gleichzeitig
}

Spring Boot Advanced

Alexander Erben 43

Spring Boot Advanced

Alexander Erben 44

