Spring Boot Advanced

RESTful Web Services in Spring Boot

Alexander Erben

Spring Boot Advanced

In diesem Modul

e REST-Controller Basics: ResponseEntity, Content Negotiation
e Validation & Error Handling
Moderne HTTP Clients: RestClient, Declarative HTTP Interfaces

Async/Streaming: CompletableFuture, Server-Sent Events

Response Wrapping mit @ControllerAdvice
File Upload (Multipart)

e API Versioning Strategien

e Virtual Threads (Project Loom)

Alexander Erben

Spring Boot Advanced

Wiederholung: Der @RestController

e Spezielle controller -Annotation, die Controller und @ResponseBody
kombiniert.

e Jede Methode gibt direkt Daten zurick (keine View-Auflosung).
e Behandelt JISON/XML-Serialisierung automatisch.

Alexander Erben

Spring Boot Advanced

@RestController
@RequestMapping("/api/v1l/users")
public class UserController {

@GetMapping("/{id}")

public User getUserBylId(@PathVariable Long id) {
// ... Logik
return new User(id, "Alice");

}

@PostMapping
@ResponseStatus(HttpStatus.CREATED) // Setzt den HTTP Status 201
public User createUser(@RequestBody User user) {

// ... Logik

return user;

Alexander Erben

Spring Boot Advanced

Wiederholung: ResponseEntity

Volle Kontrolle tber HTTP Response (Status, Header, Body).

@GetMapping("/{1d}")
public ResponseEntity<User> findUser (@PathVvVariable Long id) {
Optional<User> user = userService.findById(id);
return user.map(ResponseEntity::ok) // 200 OK
.0reElse(ResponseEntity.notFound().build()); // 404 Not Found

Alexander Erben

Spring Boot Advanced

DTO-Validierung

Das Bean Validation-Framework wird auch vom Spring Framework unterstitzt, um
Daten mit verschiedenen Annotationen zu prifen.
Die wichtigsten Annotationen:

e @valid : Standard-JSR 380 (Bean Validation) Annotation.

e @validated : Spring-spezifisch, unterstitzt Validation Groups.

Alexander Erben

Spring Boot Advanced

DTO-Validierung

// DTO fiur die Anfrage

public class UserCreateDto {
@NotBlank(message = "Name darf nicht leer sein'")
@Size(min = 3, max = 50, message = '"Name muss 3-50 Zeichen haben")
private String name;

@Email (message = "Ungultiges E-Mail Format")
private String email;

// Getter & Setter
}

@PostMapping
public ResponseEntity<User> createUser(@Valid @RequestBody UserCreateDto userDto) {

// Wenn Validation fehlschlagt, wird eine MethodArgumentNotValidException geworfen
//

Alexander Erben

Spring Boot Advanced

Validation Groups

Unterschiedliche Regeln fur verschiedene Szenarien (z.B. Erstellen vs. Aktualisieren).

// Interfaces als Marker
public interface OnCreate {}
public interface OnUpdate {}

public class UserDto {

@NotNull(groups = OnUpdate.class) // Nur bei Update ndtig
private Long id;

@NotBlank(groups = OnCreate.class) // Nur bel Create ndtig
private String name;

}

@PostMapping

public ResponseEntity<User> create(@validated(OnCreate.class) @RequestBody UserDto dto) { ... }
@PutMapping

public ResponseEntity<User> update(@Validated(OnUpdate.class) @RequestBody UserDto dto) { ... }

Alexander Erben

Spring Boot Advanced

Custom Validators

Eigene Validierungslogik implementieren.

@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = UniqueEmailvValidator.class)
public @interface UniqueEmail {
String message() default "E-Mail bereits vergeben";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
}

public class UniqueEmailValidator implements ConstraintValidator<UniqueEmail, String> {
@Autowired private UserRepository userRepository;

@Override

public boolean isValid(String email, ConstraintValidatorContext context) {
return userRepository.findByEmail(email).isEmpty();
¥

Alexander Erben

Spring Boot Advanced

Globales Error Handling

Zentrales Fehlerhandling flr die gesamte REST-API.
@ControllerAdvice
public class GlobalExceptionHandler {

@ExceptionHandler (MethodArgumentNotValidException.class)
@ResponseStatus(HttpStatus.BAD_REQUEST)

public ProblembDetail handleValidationExceptions(MethodArgumentNotValidException ex) {

ProblemDetail pd = ProblemDetail.forStatusAndDetail(HttpStatus.BAD_REQUEST,
pd.setTitle("Invalid Request Body");
return pd;

}

@ExceptionHandler (ResourceNotFoundException.class)
@ResponseStatus(HttpStatus.NOT_FOUND)
public ProblemDetail handleNotFound(ResourceNotFoundException ex) {
return ProblemDetail.forStatusAndDetail(
HttpStatus.NOT_FOUND, ex.getMessage());

Alexander Erben

"Validierungsfehler");

10

Spring Boot Advanced

ProblemDetails (RFC 7807)

Standardisiertes Format fur HTTP API Fehlerantworten (seit Spring Boot 3).

{
"type": "about:blank",
"title": "Invalid Request Body",
"status": 400,
"detail": "Validierungsfehler",
"instance": "/api/v1l/users",
"errors'": {
"name": "Name darf nicht leer sein",
"email": "Unglultiges E-Mail Format"
b
¥

Spring Boot konvertiert Problembetail automatisch in JSON oder XML, wenn der
Accept -Header dies verlangt.

Alexander Erben

11

Spring Boot Advanced

ProblemDetalls erweitern

Oft reicht der Standard nicht. Wir wollen z.B. eine tracelId oder spezifische Business-
Error-Codes hinzuftigen.

@ExceptionHandler (MyBusinessException.class)
public ProblemDetail handleBusinesskException(MyBusinesskException ex) {
ProblemDetail pd = ProblemDetail.forStatusAndDetail(
HttpStatus.BAD_REQUEST, ex.getMessage());

// Eligene Properties hinzuflgen
pd.setProperty("errorCode", "BUS-001"),
// Angenommen wir haben einen Tracer injectet

pd.setProperty("traceld", tracer.currentSpan().context().tracelId());

return pd;

Alexander Erben

12

Spring Boot Advanced

Moderne HTTP Clients

Alexander Erben

13

Spring Boot Advanced

Status Quo: RestTemplate

e Lange Zeit der Standard ftr synchrone Calls.
e Jetzt im Maintenance Mode. Es wird keine neuen Features mehr geben.

e Nachteil: Viele Uberladene Methoden, kein Fluent API.

Die Nachfolger:
1. RestClient (Spring Boot 3.2): Synchron, Fluent API. Basiert auf Servlet-Stack.
2. WebClient (Spring 5): Reaktiv, non-blocking. Erfordert spring-boot-starter -

webflux .
3. Declarative HTTP Interfaces (Spring 6): Interface-basiert (via Proxy).

14

Alexander Erben

Spring Boot Advanced

Der RestClient (Synchron)

Bietet eine moderne Fluent APl ohne Reactive Stack (Mono/Flux).

@Service
public class ProductClient {
private final RestClient restClient;

public ProductClient(RestClient.Builder builder) {
this.restClient = builder.baseUrl("https://api.example.com").build();
¥

public Product getProduct(String id) {
return restClient.get()
uri("/products/{id}", id)
.retrieve()
.body(Product.class);

Alexander Erben

15

Spring Boot Advanced

Declarative HTTP Interfaces

Definiere die APl als Java Interface (ahnlich Feign/Retrofit).

public interface UserApi {
@GetExchange("/users/{id}")
User getById(@PathVariable Long 1id);

@PostExchange("/users'")
void createUser (@RequestBody User user);

}

Dies benoétigt einen Unterbau, der die Requests ausfiihrt (WebClient oder RestClient).

Alexander Erben

16

Spring Boot Advanced

Declarative Client Factory (mit RestClient)

Verbindung von Interface und Engine.

@Configuration
public class ClientConfig {
@Bean
UserApi userApi(RestClient.Builder builder) {
RestClient client = builder.baseUrl("https://user-service").build();

// Nutzt den synchronen RestClient als Engine
RestClientAdapter adapter = RestClientAdapter.create(client);

HttpServiceProxyFactory factory = HttpServiceProxyFactory
.builderFor(adapter)
.build();

return factory.createClient(UserApi.class);

¥
¥

Alexander Erben 17

Spring Boot Advanced

Asynchrone APIs & Streaming

Alexander Erben

18

Spring Boot Advanced

CompletableFuture als Riickgabetyp

e Der Controller Thread wird freigegeben, wahrend die Logik im Hintergrund arbeitet.

e Verbessert die Skalierbarkeit bei blockierenden Operationen.

@RestController
public class AsyncController {
@Autowired private SlowService slowService;

@GetMapping("/async-result")
public CompletableFuture<String> getAsyncResult() {

return CompletableFuture.supplyAsync(() -> slowService.doSlowwork());
}

Alexander Erben

19

Spring Boot Advanced

Streaming Responses (Server-Sent Events)

Fur Realtime-Updates, z.B. wenn der Client standig neue Daten erhalten soll.

@RestController
public class SseController {

@GetMapping(value = "/events", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public SseEmitter streamkEvents() {

SseEmitter emitter = new SseEmitter();

new Thread(() -> {
// Hier: Events asynchron an den Emitter senden
// z.B. aus einem Message Queue Listener oder einem Scheduled Task
emitter.send(SseEmitter.event().name("message").data("Hello, Client!"));

emitter.complete(); // Verbindung schliel3en
}).start();

return emitter;

}

Alexander Erben 20

Spring Boot Advanced

OpenAPI (friiher Swagger)

Alexander Erben

21

Spring Boot Advanced

Ziel
Standardisierte, maschinenlesbare Beschreibung von REST-APIs.

 Dokumentation: Interaktive Ul (Swagger Ul).

e Code-Generierung: Clients in jeder Sprache.

Man unterscheidet zwei Ansatze: Code First und Contract First.

Alexander Erben

22

Spring Boot Advanced

Ansatz 1: Code-First (SpringDoc OpenAPI)

Man schreibt den Code, die Doku wird daraus generiert.

@RestController
@RequestMapping("/products")
@Tag(name = "Produktverwaltung", description = "API fiur CRUD-Operationen an Produkten')

public class ProductController {

@Operation(
summary = "Produkt anhand ID abrufen",
description = "Gibt ein Produktobjekt basierend auf der bereitgestellten ID zurlck.",
parameters = @Parameter(name = "id", description = "ID des Produkts", example = "123")
)
@ApiResponses(value = {
@ApiResponse(responseCode = "200", description = "Produkt gefunden",
content = @Content(schema = @Schema(implementation = Product.class))),
@ApiResponse(responseCode = "404", description = "Produkt nicht gefunden")
7)

@GetMapping("/{id}")

public Product getProduct(@PathvVariable Long id) {
return new Product(id, "Advanced Widget");

}

}

Alexander Erben

23

Spring Boot Advanced

Ansatz 2: Contract-First

Man schreibt zuerst die OpenAPI-Spezifikation (YAML/JSON) und generiert daraus den
Code (Interfaces, DTOs).

Vorteile:

e API-Design als erste Klasse: Fokus auf das API-Design, bevor implementiert
wird.

e Parallele Entwicklung: Backend- und Frontend-Teams kdnnen gleichzeitig
arbeiten.

o Konsistenz: API ist Uber alle Services hinweg konsistent.

Tool: openapi-generator-maven-plugin (oder Gradle Plugin).

Alexander Erben

24

Spring Boot Advanced

Response Wrapping mit @ControllerAdvice

Alexander Erben

25

Spring Boot Advanced

ResponseBodyAdyvice

Ermadglicht das globale Wrapping aller Response Bodies — z.B. fur ein einheitliches
APIl-Format.

{
"success'": true,
"data": { ... }, // Der eigentliche Response
"timestamp": "...",
"traceId": "..."
¥

Alexander Erben

26

Spring Boot Advanced

ResponseBodyAdvice Implementierung

@ControllerAdvice
public class ApiResponseWrapper implements ResponseBodyAdvice<Object> {

@Override
public boolean supports(MethodParameter returnType, Class converterType) {
// Nur flur eigene Controller, nicht fur Actuator etc.
return returnType.getContainingClass().getPackageName()
.startswith("com.example.api");

}

@Override
public Object beforeBodyWrite(Object body, MethodParameter returnType,
MediaType contentType, Class converterType,
ServerHttpRequest request, ServerHttpResponse response) {
// ProblemDetail nicht wrappen
if (body instanceof ProblemDetail) return body;

return new ApiResponse<>(true, body, Instant.now());

Alexander Erben

27

Spring Boot Advanced

ApiResponse Record

public record ApiResponse<T>(
boolean success,
T data,
Instant timestamp

) {
public ApiResponse(boolean success, T data,
this.success = success;
this.data = data;
this.timestamp = timestamp;
¥
b

Alexander Erben

Instant timestamp) {

28

Spring Boot Advanced

File Upload

Alexander Erben

29

Spring Boot Advanced

Multipart File Upload

Spring Boot unterstitzt Datei-Uploads Uber MultipartFile .

@RestController
@RequestMapping("/api/files")
public class FileUploadController {

@PostMapping("/upload")
public ResponseEntity<FileInfo> uploadFile(@RequestParam("file") MultipartFile file) {

Alexander Erben

if (file.isEmpty()) {
return ResponseEntity.badRequest().build();
b

String filename = StringUtils.cleanPath(file.getOriginalFilename());
Path targetPath = Paths.get("uploads").resolve(filename);
Files.copy(file.getInputStream(), targetPath, StandardCopyOption.REPLACE_EXISTING),

return ResponseEntity.ok(new FileInfo(filename, file.getSize()));

30

Spring Boot Advanced

Konfiguration flir grof3e Dateien

spring:
servlet:
multipart:
enabled: true
max-file-size: 10MB # Max. GrofRe pro Datei1l
max-request-size: 50MB # Max. GrofRe des gesamten Requests

file-size-threshold: 2KB # Ab dieser Grofle auf Disk schreiben

Alexander Erben

31

Spring Boot Advanced

Mehrere Dateien hochladen

@PostMapping("/upload-multiple")
public ResponseEntity<List<FileInfo>> uploadMultiple(
@RequestParam('"files") List<MultipartFile> files) {

List<FileInfo> results = files.stream()
filter(f -> If.isEmpty())
.map(this::saveFile)

.toList();

return ResponseEntity.ok(results);

}

@PostMapping("/upload-with-metadata")

public ResponseEntity<FileInfo> uploadwWithMetadata(
@RequestPart("file") MultipartFile file,
@RequestPart('"metadata") FileMetadata metadata) { // JSON Part

// file + metadata verarbeiten
return ResponseEntity.ok(new FileInfo(file.getOriginalFilename(), file.getSize()));

}

Alexander Erben

32

Spring Boot Advanced

API Versioning

Alexander Erben

33

Spring Boot Advanced

Warum API Versioning?

e Breaking Changes: Alte Clients sollen weiter funktionieren.
o Parallele Versionen: v1 und v2 gleichzeitig betreiben.

e Deprecation: Sanfte Migration ermdglichen.

Alexander Erben

34

Spring Boot Advanced

Strategie 1: URL Path Versioning

Die Version ist Teil der URL.

@RestController
@RequestMapping("/api/v1l/users")
public class UserControllerVl {
@GetMapping("/{id}")
public UserV1l getUser(@PathvVariable Long id) { ... }
¥

@RestController
@RequestMapping("/api/v2/users")
public class UserControllerVv2 {
@GetMapping("/{id}")
public UserV2 getUser(@PathvVariable Long id) { ... }
¥

Pro: Einfach, klar sichtbar, gut cachebar.
HeEon“URL-Proliferation, nicht RESTful (Resource dndert sich nicht).

35

Spring Boot Advanced

Strategie 2: Header Versioning

Version wird im Header Gbergeben.

@RestController
@RequestMapping("/api/users'")
public class UserController {

@GetMapping(value = "/{i1d}", headers = "X-API-Version=1")
public UserV1l getUserVi(@PathvVariable Long id) { ... }

@GetMapping(value = "/{id}", headers = "X-API-Version=2")
public UserV2 getUserV2(@PathvVariable Long id) { ... }

Pro: Saubere URLSs.
Con: Nicht im Browser testbar, Header kann vergessen werden.

Alexander Erben

36

Spring Boot Advanced

Strategie 3: Media Type Versioning

Version im Accept -Header (Content Negotiation).

@RestController
@RequestMapping('"/api/users")
public class UserController {

@GetMapping(value = "/{id}", produces = "application/vnd.myapi.vi+json'")
public UserVl1l getUserVi(@Pathvariable Long id) { ... }

@GetMapping(value = "/{i1id}", produces = "application/vnd.myapi.v2+json')
public UserV2 getUserV2(@Pathvariable Long id) { ... }

Pro: RESTful, Resource-URL bleibt stabil.
Con: Komplex, schwer zu testen.

Alexander Erben

Spring Boot Advanced

Strategie 4: Query Parameter

@GetMapping("/{1d}")

public ResponseEntity<?> getUser(
@Pathvariable Long id,
@RequestParam(defaultvalue

"1") int version) {

return switch (version) {
case 1 -> ResponseEntity.ok(userService.getUserVi(id));
case 2 -> ResponseEntity.ok(userService.getUserV2(id));
default -> ResponseEntity.badRequest().body("Unknown version");

+s

Pro: Einfach zu testen.
Con: Nicht standardisiert, Query-Params eigentlich ftr Filter.

Alexander Erben 38

Spring Boot Advanced

Empfehlung
Szenario Empfohlene Strategie
Offentliche API URL Path (am klarsten)

Interne Microservices Header oder Media Type

Schnelle Iteration Query Parameter (pragmatisch)

Tipp: Egal welche Strategie — dokumentieren Sie Ihre Deprecation-Policy!

Alexander Erben

39

Spring Boot Advanced

Virtual Threads (Project Loom)

Alexander Erben

40

Spring Boot Advanced

Das Problem: Thread-per-Request

Klassische Servlet-Container nutzen einen Thread pro Request.

e Tomcat Default: ~200 Threads
» Blockierender Request: Thread wartet auf DB/API - verschwendet
e Mehr Throughput? Mehr Threads — mehr RAM, Context-Switching

Losung bisher: Reactive Programming (WebFlux) — aber komplexer Code.

Alexander Erben

41

Spring Boot Advanced

Virtual Threads: Die LOosung

Java 21 (LTS) bringt Virtual Threads — leichtgewichtige Threads, die vom JVM
verwaltet werden.

e Millionen von Virtual Threads mdglich

e Blockieren ist OK — JVM parkt den Virtual Thread

e Carrier Thread wird fur andere Arbeit freigegeben

o Kein reaktiver Code ndtig — synchroner Stil funktioniert

Alexander Erben

42

Spring Boot Advanced

Virtual Threads aktivieren

Spring Boot 3.2+:

spring:
threads:
virtual:
enabled: true

Das war's! Alle Request-Handler laufen jetzt auf Virtual Threads.

Alexander Erben

43

Spring Boot Advanced

Vorher vs. Nachher

Ohne Virtual Threads:

Request 1 - Platform Thread 1 (wartet auf DB...) <« blockiert
Request 2 - Platform Thread 2 (wartet auf DB...) < blockiert
Request 3 - Platform Thread 3

Request 201 - REJECTED (Thread Pool voll!)

Mit Virtual Threads:

Request 1 - Virtual Thread 1 (wartet auf DB...) <« JVM parkt
Request 2 - Virtual Thread 2 (wartet auf DB...) <« JVM parkt

Request 10000 - Virtual Thread 10000 <~ Kein Problem!

Alexander Erben

44

Spring Boot Advanced

Wann Virtual Threads nutzen?

Szenario Empfehlung

I/O-lastige Anwendung (DB, HTTP) Virtual Threads

CPU-lastige Berechnung Platform Threads
Bestehendes WebFlux Kein Vorteil (bereits non-blocking)
Legacy-Code mit synchronized Testen! (Pinning-Problem)

Alexander Erben

45

Spring Boot Advanced

Das Pinning-Problem

Virtual Threads kénnen gepinnt werden, wenn sie einen synchronized -Block
betreten.

// Problematisch: Virtual Thread wird an Carrier gepinnt
synchronized (lock) {

blockingDatabaseCall(); // Carrier Thread blockiert!
}

// Besser: ReentrantLock verwenden
lock.lock();
try {
blockingDatabaseCall(); // Virtual Thread kann yielden
} finally {
lock.unlock();
¥

Dia nose: - Djdk.tracePinnedThreads=short

Alexander

46

Spring Boot Advanced

Virtual Threads mit @Async

Auch @Async -Methoden kdnnen Virtual Threads nutzen:

@Configuration
@EnableAsync
public class AsyncConfig {

@Bean
public Executor taskExecutor() {

return Executors.newVirtualThreadPerTaskExecutor();
¥

@Service
public class EmailService {

@Async
public CompletableFuture<Void> sendEmailAsync(String to, String content) {
Alexander Erben // Lauft auf Virtual Thread 47
emaillClient.send(to, content);

Spring Boot Advanced

Virtual Threads: Caveats

1. ThreadLocal: Vorsicht bei grofsem ThreadLocal-Speicher (Millionen Threads!)
2. Native Code: JNI-Calls kdnnen Virtual Threads pinnen
3. Monitoring: Thread-Dumps zeigen sehr viele Threads

4. Connection Pools: Kdnnen zum Bottleneck werden (Pool < Virtual Threads)

Connection Pool anpassen
spring:
datasource:
hikari:
maximum-pool-size: 50 # Erhohen, aber DB-Limits beachten!

Alexander Erben

48

Spring Boot Advanced

Structured Concurrency (Preview)

Java 21+ bietet auch Structured Concurrency fir parallele Tasks:

try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
Supplier<User> userTask = scope.fork(() -> userService.getUser(id));
Supplier<List<Order>> ordersTask = scope.fork(() -> orderService.getOrders(id));

scope.join(); // Warte auf alle
scope.throwIfFailed(); // Exception bel Fehler

return new UserProfile(userTask.get(), ordersTask.get());

Vorteil: Alle Subtasks werden bei Fehler automatisch abgebrochen.

Alexander Erben

49

