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In diesem Modul

e REST-Controller Basics: ResponseEntity, Content Negotiation
e Validation & Error Handling
Moderne HTTP Clients: RestClient, Declarative HTTP Interfaces

Async/Streaming: CompletableFuture, Server-Sent Events

Response Wrapping mit @ControllerAdvice
File Upload (Multipart)

e API Versioning Strategien

e Virtual Threads (Project Loom)
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Wiederholung: Der @RestController

e Spezielle controller -Annotation, die Controller und @ResponseBody
kombiniert.

e Jede Methode gibt direkt Daten zurick (keine View-Auflosung).
e Behandelt JISON/XML-Serialisierung automatisch.
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@RestController
@RequestMapping("/api/v1l/users")
public class UserController {

@GetMapping("/{id}")

public User getUserBylId(@PathVariable Long id) {
// ... Logik
return new User(id, "Alice");

}

@PostMapping
@ResponseStatus(HttpStatus.CREATED) // Setzt den HTTP Status 201
public User createUser(@RequestBody User user) {

// ... Logik

return user;
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Wiederholung: ResponseEntity

Volle Kontrolle tber HTTP Response (Status, Header, Body).

@GetMapping("/{1d}")
public ResponseEntity<User> findUser (@PathVvVariable Long id) {
Optional<User> user = userService.findById(id);
return user.map(ResponseEntity::ok) // 200 OK
.0reElse(ResponseEntity.notFound().build()); // 404 Not Found
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DTO-Validierung

Das Bean Validation-Framework wird auch vom Spring Framework unterstitzt, um
Daten mit verschiedenen Annotationen zu prifen.
Die wichtigsten Annotationen:

e @valid : Standard-JSR 380 (Bean Validation) Annotation.

e @validated : Spring-spezifisch, unterstitzt Validation Groups.
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DTO-Validierung

// DTO fiur die Anfrage

public class UserCreateDto {
@NotBlank(message = "Name darf nicht leer sein'")
@Size(min = 3, max = 50, message = '"Name muss 3-50 Zeichen haben")
private String name;

@Email (message = "Ungultiges E-Mail Format")
private String email;

// Getter & Setter
}

@PostMapping
public ResponseEntity<User> createUser(@Valid @RequestBody UserCreateDto userDto) {

// Wenn Validation fehlschlagt, wird eine MethodArgumentNotValidException geworfen
//
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Validation Groups

Unterschiedliche Regeln fur verschiedene Szenarien (z.B. Erstellen vs. Aktualisieren).

// Interfaces als Marker
public interface OnCreate {}
public interface OnUpdate {}

public class UserDto {

@NotNull(groups = OnUpdate.class) // Nur bei Update ndtig
private Long id;

@NotBlank(groups = OnCreate.class) // Nur bel Create ndtig
private String name;

}

@PostMapping

public ResponseEntity<User> create(@validated(OnCreate.class) @RequestBody UserDto dto) { ... }
@PutMapping

public ResponseEntity<User> update(@Validated(OnUpdate.class) @RequestBody UserDto dto) { ... }
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Custom Validators

Eigene Validierungslogik implementieren.

@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = UniqueEmailvValidator.class)
public @interface UniqueEmail {
String message() default "E-Mail bereits vergeben";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
}

public class UniqueEmailValidator implements ConstraintValidator<UniqueEmail, String> {
@Autowired private UserRepository userRepository;

@Override

public boolean isValid(String email, ConstraintValidatorContext context) {
return userRepository.findByEmail(email).isEmpty();
¥
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Globales Error Handling

Zentrales Fehlerhandling flr die gesamte REST-API.
@ControllerAdvice
public class GlobalExceptionHandler {

@ExceptionHandler (MethodArgumentNotValidException.class)
@ResponseStatus(HttpStatus.BAD_REQUEST)

public ProblembDetail handleValidationExceptions(MethodArgumentNotValidException ex) {

ProblemDetail pd = ProblemDetail.forStatusAndDetail(HttpStatus.BAD_REQUEST,
pd.setTitle("Invalid Request Body");
return pd;

}

@ExceptionHandler (ResourceNotFoundException.class)
@ResponseStatus(HttpStatus.NOT_FOUND)
public ProblemDetail handleNotFound(ResourceNotFoundException ex) {
return ProblemDetail.forStatusAndDetail(
HttpStatus.NOT_FOUND, ex.getMessage());
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ProblemDetails (RFC 7807)

Standardisiertes Format fur HTTP API Fehlerantworten (seit Spring Boot 3).

{
"type": "about:blank",
"title": "Invalid Request Body",
"status": 400,
"detail": "Validierungsfehler",
"instance": "/api/v1l/users",
"errors'": {
"name": "Name darf nicht leer sein",
"email": "Unglultiges E-Mail Format"
b
¥

Spring Boot konvertiert Problembetail automatisch in JSON oder XML, wenn der
Accept -Header dies verlangt.
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ProblemDetalls erweitern

Oft reicht der Standard nicht. Wir wollen z.B. eine tracelId oder spezifische Business-
Error-Codes hinzuftigen.

@ExceptionHandler (MyBusinessException.class)
public ProblemDetail handleBusinesskException(MyBusinesskException ex) {
ProblemDetail pd = ProblemDetail.forStatusAndDetail(
HttpStatus.BAD_REQUEST, ex.getMessage());

// Eligene Properties hinzuflgen
pd.setProperty("errorCode", "BUS-001"),
// Angenommen wir haben einen Tracer injectet

pd.setProperty("traceld", tracer.currentSpan().context().tracelId());

return pd;

Alexander Erben

12



Spring Boot Advanced

Moderne HTTP Clients
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Status Quo: RestTemplate

e Lange Zeit der Standard ftr synchrone Calls.
e Jetzt im Maintenance Mode. Es wird keine neuen Features mehr geben.

e Nachteil: Viele Uberladene Methoden, kein Fluent API.

Die Nachfolger:
1. RestClient (Spring Boot 3.2): Synchron, Fluent API. Basiert auf Servlet-Stack.
2. WebClient (Spring 5): Reaktiv, non-blocking. Erfordert spring-boot-starter -

webflux .
3. Declarative HTTP Interfaces (Spring 6): Interface-basiert (via Proxy).

14
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Der RestClient (Synchron)

Bietet eine moderne Fluent APl ohne Reactive Stack (Mono/Flux).

@Service
public class ProductClient {
private final RestClient restClient;

public ProductClient(RestClient.Builder builder) {
this.restClient = builder.baseUrl("https://api.example.com").build();
¥

public Product getProduct(String id) {
return restClient.get()
uri("/products/{id}", id)
.retrieve()
.body(Product.class);
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Declarative HTTP Interfaces

Definiere die APl als Java Interface (ahnlich Feign/Retrofit).

public interface UserApi {
@GetExchange("/users/{id}")
User getById(@PathVariable Long 1id);

@PostExchange("/users'")
void createUser (@RequestBody User user);

}

Dies benoétigt einen Unterbau, der die Requests ausfiihrt (WebClient oder RestClient).
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Declarative Client Factory (mit RestClient)

Verbindung von Interface und Engine.

@Configuration
public class ClientConfig {
@Bean
UserApi userApi(RestClient.Builder builder) {
RestClient client = builder.baseUrl("https://user-service").build();

// Nutzt den synchronen RestClient als Engine
RestClientAdapter adapter = RestClientAdapter.create(client);

HttpServiceProxyFactory factory = HttpServiceProxyFactory
.builderFor(adapter)
.build();

return factory.createClient(UserApi.class);

¥
¥
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Asynchrone APIs & Streaming
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CompletableFuture als Riickgabetyp

e Der Controller Thread wird freigegeben, wahrend die Logik im Hintergrund arbeitet.

e Verbessert die Skalierbarkeit bei blockierenden Operationen.

@RestController
public class AsyncController {
@Autowired private SlowService slowService;

@GetMapping("/async-result")
public CompletableFuture<String> getAsyncResult() {

return CompletableFuture.supplyAsync(() -> slowService.doSlowwork());
}
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Streaming Responses (Server-Sent Events)

Fur Realtime-Updates, z.B. wenn der Client standig neue Daten erhalten soll.

@RestController
public class SseController {

@GetMapping(value = "/events", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public SseEmitter streamkEvents() {

SseEmitter emitter = new SseEmitter();

new Thread(() -> {
// Hier: Events asynchron an den Emitter senden
// z.B. aus einem Message Queue Listener oder einem Scheduled Task
emitter.send(SseEmitter.event().name("message").data("Hello, Client!"));

emitter.complete(); // Verbindung schliel3en
}).start();

return emitter;

}
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OpenAPI (friiher Swagger)
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Ziel
Standardisierte, maschinenlesbare Beschreibung von REST-APIs.

 Dokumentation: Interaktive Ul (Swagger Ul).

e Code-Generierung: Clients in jeder Sprache.

Man unterscheidet zwei Ansatze: Code First und Contract First.

Alexander Erben
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Ansatz 1: Code-First (SpringDoc OpenAPI)

Man schreibt den Code, die Doku wird daraus generiert.

@RestController
@RequestMapping("/products")
@Tag(name = "Produktverwaltung", description = "API fiur CRUD-Operationen an Produkten')

public class ProductController {

@Operation(
summary = "Produkt anhand ID abrufen",
description = "Gibt ein Produktobjekt basierend auf der bereitgestellten ID zurlck.",
parameters = @Parameter(name = "id", description = "ID des Produkts", example = "123")
)
@ApiResponses(value = {
@ApiResponse(responseCode = "200", description = "Produkt gefunden",
content = @Content(schema = @Schema(implementation = Product.class))),
@ApiResponse(responseCode = "404", description = "Produkt nicht gefunden")
7)

@GetMapping("/{id}")

public Product getProduct(@PathvVariable Long id) {
return new Product(id, "Advanced Widget");

}

}
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Ansatz 2: Contract-First

Man schreibt zuerst die OpenAPI-Spezifikation (YAML/JSON) und generiert daraus den
Code (Interfaces, DTOs).

Vorteile:

e API-Design als erste Klasse: Fokus auf das API-Design, bevor implementiert
wird.

e Parallele Entwicklung: Backend- und Frontend-Teams kdnnen gleichzeitig
arbeiten.

o Konsistenz: API ist Uber alle Services hinweg konsistent.

Tool: openapi-generator-maven-plugin (oder Gradle Plugin).
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Response Wrapping mit @ControllerAdvice

Alexander Erben

25



Spring Boot Advanced

ResponseBodyAdyvice

Ermadglicht das globale Wrapping aller Response Bodies — z.B. fur ein einheitliches
APIl-Format.

{
"success'": true,
"data": { ... }, // Der eigentliche Response
"timestamp": "...",
"traceId": "..."
¥
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26



Spring Boot Advanced

ResponseBodyAdvice Implementierung

@ControllerAdvice
public class ApiResponseWrapper implements ResponseBodyAdvice<Object> {

@Override
public boolean supports(MethodParameter returnType, Class converterType) {
// Nur flur eigene Controller, nicht fur Actuator etc.
return returnType.getContainingClass().getPackageName()
.startswith("com.example.api");

}

@Override
public Object beforeBodyWrite(Object body, MethodParameter returnType,
MediaType contentType, Class converterType,
ServerHttpRequest request, ServerHttpResponse response) {
// ProblemDetail nicht wrappen
if (body instanceof ProblemDetail) return body;

return new ApiResponse<>(true, body, Instant.now());

Alexander Erben
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ApiResponse Record

public record ApiResponse<T>(
boolean success,
T data,
Instant timestamp

) {
public ApiResponse(boolean success, T data,
this.success = success;
this.data = data;
this.timestamp = timestamp;
¥
b
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Instant timestamp) {
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File Upload

Alexander Erben
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Multipart File Upload

Spring Boot unterstitzt Datei-Uploads Uber MultipartFile .

@RestController
@RequestMapping("/api/files")
public class FileUploadController {

@PostMapping("/upload")
public ResponseEntity<FileInfo> uploadFile(@RequestParam("file") MultipartFile file) {

Alexander Erben

if (file.isEmpty()) {
return ResponseEntity.badRequest().build();
b

String filename = StringUtils.cleanPath(file.getOriginalFilename());
Path targetPath = Paths.get("uploads").resolve(filename);
Files.copy(file.getInputStream(), targetPath, StandardCopyOption.REPLACE_EXISTING),

return ResponseEntity.ok(new FileInfo(filename, file.getSize()));
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Konfiguration flir grof3e Dateien

spring:
servlet:
multipart:
enabled: true
max-file-size: 10MB # Max. GrofRe pro Datei1l
max-request-size: 50MB # Max. GrofRe des gesamten Requests

file-size-threshold: 2KB # Ab dieser Grofle auf Disk schreiben

Alexander Erben
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Mehrere Dateien hochladen

@PostMapping("/upload-multiple")
public ResponseEntity<List<FileInfo>> uploadMultiple(
@RequestParam('"files") List<MultipartFile> files) {

List<FileInfo> results = files.stream()
filter(f -> If.isEmpty())
.map(this::saveFile)

.toList();

return ResponseEntity.ok(results);

}

@PostMapping("/upload-with-metadata")

public ResponseEntity<FileInfo> uploadwWithMetadata(
@RequestPart("file") MultipartFile file,
@RequestPart('"metadata") FileMetadata metadata) { // JSON Part

// file + metadata verarbeiten
return ResponseEntity.ok(new FileInfo(file.getOriginalFilename(), file.getSize()));

}
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API Versioning

Alexander Erben
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Warum API Versioning?

e Breaking Changes: Alte Clients sollen weiter funktionieren.
o Parallele Versionen: v1 und v2 gleichzeitig betreiben.

e Deprecation: Sanfte Migration ermdglichen.

Alexander Erben
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Strategie 1: URL Path Versioning

Die Version ist Teil der URL.

@RestController
@RequestMapping("/api/v1l/users")
public class UserControllerVl {
@GetMapping("/{id}")
public UserV1l getUser(@PathvVariable Long id) { ... }
¥

@RestController
@RequestMapping("/api/v2/users")
public class UserControllerVv2 {
@GetMapping("/{id}")
public UserV2 getUser(@PathvVariable Long id) { ... }
¥

Pro: Einfach, klar sichtbar, gut cachebar.
HeEon“URL-Proliferation, nicht RESTful (Resource dndert sich nicht).

35



Spring Boot Advanced

Strategie 2: Header Versioning

Version wird im Header Gbergeben.

@RestController
@RequestMapping("/api/users'")
public class UserController {

@GetMapping(value = "/{i1d}", headers = "X-API-Version=1")
public UserV1l getUserVi(@PathvVariable Long id) { ... }

@GetMapping(value = "/{id}", headers = "X-API-Version=2")
public UserV2 getUserV2(@PathvVariable Long id) { ... }

Pro: Saubere URLSs.
Con: Nicht im Browser testbar, Header kann vergessen werden.
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Strategie 3: Media Type Versioning

Version im Accept -Header (Content Negotiation).

@RestController
@RequestMapping('"/api/users")
public class UserController {

@GetMapping(value = "/{id}", produces = "application/vnd.myapi.vi+json'")
public UserVl1l getUserVi(@Pathvariable Long id) { ... }

@GetMapping(value = "/{i1id}", produces = "application/vnd.myapi.v2+json')
public UserV2 getUserV2(@Pathvariable Long id) { ... }

Pro: RESTful, Resource-URL bleibt stabil.
Con: Komplex, schwer zu testen.
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Strategie 4: Query Parameter

@GetMapping("/{1d}")

public ResponseEntity<?> getUser(
@Pathvariable Long id,
@RequestParam(defaultvalue

"1") int version) {

return switch (version) {
case 1 -> ResponseEntity.ok(userService.getUserVi(id));
case 2 -> ResponseEntity.ok(userService.getUserV2(id));
default -> ResponseEntity.badRequest().body("Unknown version");

+s

Pro: Einfach zu testen.
Con: Nicht standardisiert, Query-Params eigentlich ftr Filter.
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Empfehlung
Szenario Empfohlene Strategie
Offentliche API URL Path (am klarsten)

Interne Microservices Header oder Media Type

Schnelle Iteration Query Parameter (pragmatisch)

Tipp: Egal welche Strategie — dokumentieren Sie Ihre Deprecation-Policy!
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Virtual Threads (Project Loom)
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Das Problem: Thread-per-Request

Klassische Servlet-Container nutzen einen Thread pro Request.

e Tomcat Default: ~200 Threads
» Blockierender Request: Thread wartet auf DB/API - verschwendet
e Mehr Throughput? Mehr Threads — mehr RAM, Context-Switching

Losung bisher: Reactive Programming (WebFlux) — aber komplexer Code.
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Virtual Threads: Die LOosung

Java 21 (LTS) bringt Virtual Threads — leichtgewichtige Threads, die vom JVM
verwaltet werden.

e Millionen von Virtual Threads mdglich

e Blockieren ist OK — JVM parkt den Virtual Thread

e Carrier Thread wird fur andere Arbeit freigegeben

o Kein reaktiver Code ndtig — synchroner Stil funktioniert

Alexander Erben
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Virtual Threads aktivieren

Spring Boot 3.2+:

spring:
threads:
virtual:
enabled: true

Das war's! Alle Request-Handler laufen jetzt auf Virtual Threads.
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Vorher vs. Nachher

Ohne Virtual Threads:

Request 1 - Platform Thread 1 (wartet auf DB...) <« blockiert
Request 2 - Platform Thread 2 (wartet auf DB...) < blockiert
Request 3 - Platform Thread 3

Request 201 - REJECTED (Thread Pool voll!)

Mit Virtual Threads:

Request 1 - Virtual Thread 1 (wartet auf DB...) <« JVM parkt
Request 2 - Virtual Thread 2 (wartet auf DB...) <« JVM parkt

Request 10000 - Virtual Thread 10000 <~ Kein Problem!

Alexander Erben
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Wann Virtual Threads nutzen?

Szenario Empfehlung

I/O-lastige Anwendung (DB, HTTP) Virtual Threads

CPU-lastige Berechnung Platform Threads
Bestehendes WebFlux Kein Vorteil (bereits non-blocking)
Legacy-Code mit synchronized Testen! (Pinning-Problem)

Alexander Erben
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Das Pinning-Problem

Virtual Threads kénnen gepinnt werden, wenn sie einen synchronized -Block
betreten.

// Problematisch: Virtual Thread wird an Carrier gepinnt
synchronized (lock) {

blockingDatabaseCall(); // Carrier Thread blockiert!
}

// Besser: ReentrantLock verwenden
lock.lock();
try {
blockingDatabaseCall(); // Virtual Thread kann yielden
} finally {
lock.unlock();
¥

Dia nose: - Djdk.tracePinnedThreads=short

Alexander
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Virtual Threads mit @Async

Auch @Async -Methoden kdnnen Virtual Threads nutzen:

@Configuration
@EnableAsync
public class AsyncConfig {

@Bean
public Executor taskExecutor() {

return Executors.newVirtualThreadPerTaskExecutor();
¥

@Service
public class EmailService {

@Async
public CompletableFuture<Void> sendEmailAsync(String to, String content) {
Alexander Erben // Lauft auf Virtual Thread 47
emaillClient.send(to, content);
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Virtual Threads: Caveats

1. ThreadLocal: Vorsicht bei grofsem ThreadLocal-Speicher (Millionen Threads!)
2. Native Code: JNI-Calls kdnnen Virtual Threads pinnen
3. Monitoring: Thread-Dumps zeigen sehr viele Threads

4. Connection Pools: Kdnnen zum Bottleneck werden (Pool < Virtual Threads)

# Connection Pool anpassen
spring:
datasource:
hikari:
maximum-pool-size: 50 # Erhohen, aber DB-Limits beachten!
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Structured Concurrency (Preview)

Java 21+ bietet auch Structured Concurrency fir parallele Tasks:

try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
Supplier<User> userTask = scope.fork(() -> userService.getUser(id));
Supplier<List<Order>> ordersTask = scope.fork(() -> orderService.getOrders(id));

scope.join(); // Warte auf alle
scope.throwIfFailed(); // Exception bel Fehler

return new UserProfile(userTask.get(), ordersTask.get());

Vorteil: Alle Subtasks werden bei Fehler automatisch abgebrochen.
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