
RESTful Web Services in Spring Boot

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

REST-Controller Basics: ResponseEntity, Content Negotiation

Validation & Error Handling

Moderne HTTP Clients: RestClient, Declarative HTTP Interfaces

Async/Streaming: CompletableFuture, Server-Sent Events

Response Wrapping mit @ControllerAdvice

File Upload (Multipart)

API Versioning Strategien

Virtual Threads (Project Loom)

Spring Boot Advanced

Alexander Erben 2

Wiederholung: Der @RestController

Spezielle Controller -Annotation, die Controller und @ResponseBody
kombiniert.

Jede Methode gibt direkt Daten zurück (keine View-Auflösung).

Behandelt JSON/XML-Serialisierung automatisch.

Spring Boot Advanced

Alexander Erben 3

@RestController
@RequestMapping("/api/v1/users")
public class UserController {

 @GetMapping("/{id}")
 public User getUserById(@PathVariable Long id) {
 // ... Logik
 return new User(id, "Alice");
 }

 @PostMapping
 @ResponseStatus(HttpStatus.CREATED) // Setzt den HTTP Status 201
 public User createUser(@RequestBody User user) {
 // ... Logik
 return user;
 }
}

Spring Boot Advanced

Alexander Erben 4

Wiederholung: ResponseEntity

Volle Kontrolle über HTTP Response (Status, Header, Body).

@GetMapping("/{id}")
public ResponseEntity<User> findUser(@PathVariable Long id) {
 Optional<User> user = userService.findById(id);
 return user.map(ResponseEntity::ok) // 200 OK
 .orElse(ResponseEntity.notFound().build()); // 404 Not Found
}

Spring Boot Advanced

Alexander Erben 5

DTO-Validierung

Das Bean Validation-Framework wird auch vom Spring Framework unterstützt, um
Daten mit verschiedenen Annotationen zu prüfen.

Die wichtigsten Annotationen:

@Valid : Standard-JSR 380 (Bean Validation) Annotation.

@Validated : Spring-spezifisch, unterstützt Validation Groups.

Spring Boot Advanced

Alexander Erben 6

DTO-Validierung

// DTO für die Anfrage
public class UserCreateDto {
 @NotBlank(message = "Name darf nicht leer sein")
 @Size(min = 3, max = 50, message = "Name muss 3-50 Zeichen haben")
 private String name;

 @Email(message = "Ungültiges E-Mail Format")
 private String email;

 // Getter & Setter
}

@PostMapping
public ResponseEntity<User> createUser(@Valid @RequestBody UserCreateDto userDto) {
 // Wenn Validation fehlschlägt, wird eine MethodArgumentNotValidException geworfen
 // ...
}

Spring Boot Advanced

Alexander Erben 7

Validation Groups

Unterschiedliche Regeln für verschiedene Szenarien (z.B. Erstellen vs. Aktualisieren).

// Interfaces als Marker
public interface OnCreate {}
public interface OnUpdate {}

public class UserDto {
 @NotNull(groups = OnUpdate.class) // Nur bei Update nötig
 private Long id;

 @NotBlank(groups = OnCreate.class) // Nur bei Create nötig
 private String name;
}

@PostMapping
public ResponseEntity<User> create(@Validated(OnCreate.class) @RequestBody UserDto dto) { ... }

@PutMapping
public ResponseEntity<User> update(@Validated(OnUpdate.class) @RequestBody UserDto dto) { ... }

Spring Boot Advanced

Alexander Erben 8

Custom Validators

Eigene Validierungslogik implementieren.

@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = UniqueEmailValidator.class)
public @interface UniqueEmail {
 String message() default "E-Mail bereits vergeben";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

public class UniqueEmailValidator implements ConstraintValidator<UniqueEmail, String> {
 @Autowired private UserRepository userRepository;

 @Override
 public boolean isValid(String email, ConstraintValidatorContext context) {
 return userRepository.findByEmail(email).isEmpty();
 }
}

Spring Boot Advanced

Alexander Erben 9

Globales Error Handling

Zentrales Fehlerhandling für die gesamte REST-API.

@ControllerAdvice
public class GlobalExceptionHandler {

 @ExceptionHandler(MethodArgumentNotValidException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 public ProblemDetail handleValidationExceptions(MethodArgumentNotValidException ex) {
 ProblemDetail pd = ProblemDetail.forStatusAndDetail(HttpStatus.BAD_REQUEST, "Validierungsfehler");
 pd.setTitle("Invalid Request Body");
 return pd;
 }

 @ExceptionHandler(ResourceNotFoundException.class)
 @ResponseStatus(HttpStatus.NOT_FOUND)
 public ProblemDetail handleNotFound(ResourceNotFoundException ex) {
 return ProblemDetail.forStatusAndDetail(
 HttpStatus.NOT_FOUND, ex.getMessage());
 }
}

Spring Boot Advanced

Alexander Erben 10

ProblemDetails (RFC 7807)

Standardisiertes Format für HTTP API Fehlerantworten (seit Spring Boot 3).

{
 "type": "about:blank",
 "title": "Invalid Request Body",
 "status": 400,
 "detail": "Validierungsfehler",
 "instance": "/api/v1/users",
 "errors": {
 "name": "Name darf nicht leer sein",
 "email": "Ungültiges E-Mail Format"
 }
}

Spring Boot konvertiert ProblemDetail automatisch in JSON oder XML, wenn der
Accept -Header dies verlangt.

Spring Boot Advanced

Alexander Erben 11

ProblemDetails erweitern

Oft reicht der Standard nicht. Wir wollen z.B. eine traceId oder spezifische Business-

Error-Codes hinzufügen.

@ExceptionHandler(MyBusinessException.class)
public ProblemDetail handleBusinessException(MyBusinessException ex) {
 ProblemDetail pd = ProblemDetail.forStatusAndDetail(
 HttpStatus.BAD_REQUEST, ex.getMessage());

 // Eigene Properties hinzufügen
 pd.setProperty("errorCode", "BUS-001");
 // Angenommen wir haben einen Tracer injectet
 pd.setProperty("traceId", tracer.currentSpan().context().traceId());

 return pd;
}

Spring Boot Advanced

Alexander Erben 12

Moderne HTTP Clients

Spring Boot Advanced

Alexander Erben 13

Status Quo: RestTemplate

Lange Zeit der Standard für synchrone Calls.

Jetzt im Maintenance Mode. Es wird keine neuen Features mehr geben.

Nachteil: Viele überladene Methoden, kein Fluent API.

Die Nachfolger:

1. RestClient (Spring Boot 3.2): Synchron, Fluent API. Basiert auf Servlet-Stack.

2. WebClient (Spring 5): Reaktiv, non-blocking. Erfordert spring-boot-starter-

webflux .

3. Declarative HTTP Interfaces (Spring 6): Interface-basiert (via Proxy).

Spring Boot Advanced

Alexander Erben 14

Der RestClient (Synchron)

Bietet eine moderne Fluent API ohne Reactive Stack (Mono/Flux).

@Service
public class ProductClient {
 private final RestClient restClient;

 public ProductClient(RestClient.Builder builder) {
 this.restClient = builder.baseUrl("https://api.example.com").build();
 }

 public Product getProduct(String id) {
 return restClient.get()
 .uri("/products/{id}", id)
 .retrieve()
 .body(Product.class);
 }
}

Spring Boot Advanced

Alexander Erben 15

Declarative HTTP Interfaces

Definiere die API als Java Interface (ähnlich Feign/Retrofit).

public interface UserApi {
 @GetExchange("/users/{id}")
 User getById(@PathVariable Long id);

 @PostExchange("/users")
 void createUser(@RequestBody User user);
}

Dies benötigt einen Unterbau, der die Requests ausführt (WebClient oder RestClient).

Spring Boot Advanced

Alexander Erben 16

Declarative Client Factory (mit RestClient)

Verbindung von Interface und Engine.

@Configuration
public class ClientConfig {
 @Bean
 UserApi userApi(RestClient.Builder builder) {
 RestClient client = builder.baseUrl("https://user-service").build();

 // Nutzt den synchronen RestClient als Engine
 RestClientAdapter adapter = RestClientAdapter.create(client);

 HttpServiceProxyFactory factory = HttpServiceProxyFactory
 .builderFor(adapter)
 .build();

 return factory.createClient(UserApi.class);
 }
}

Spring Boot Advanced

Alexander Erben 17

Asynchrone APIs & Streaming

Spring Boot Advanced

Alexander Erben 18

CompletableFuture als Rückgabetyp

Der Controller Thread wird freigegeben, während die Logik im Hintergrund arbeitet.

Verbessert die Skalierbarkeit bei blockierenden Operationen.

@RestController
public class AsyncController {
 @Autowired private SlowService slowService;

 @GetMapping("/async-result")
 public CompletableFuture<String> getAsyncResult() {
 return CompletableFuture.supplyAsync(() -> slowService.doSlowWork());
 }
}

Spring Boot Advanced

Alexander Erben 19

Streaming Responses (Server-Sent Events)

Für Realtime-Updates, z.B. wenn der Client ständig neue Daten erhalten soll.

@RestController
public class SseController {

 @GetMapping(value = "/events", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
 public SseEmitter streamEvents() {
 SseEmitter emitter = new SseEmitter();

 new Thread(() -> {
 // Hier: Events asynchron an den Emitter senden
 // z.B. aus einem Message Queue Listener oder einem Scheduled Task
 emitter.send(SseEmitter.event().name("message").data("Hello, Client!"));
 emitter.complete(); // Verbindung schließen
 }).start();

 return emitter;
 }
}

Spring Boot Advanced

Alexander Erben 20

OpenAPI (früher Swagger)

Spring Boot Advanced

Alexander Erben 21

Ziel

Standardisierte, maschinenlesbare Beschreibung von REST-APIs.

Dokumentation: Interaktive UI (Swagger UI).

Code-Generierung: Clients in jeder Sprache.

Man unterscheidet zwei Ansätze: Code First und Contract First.

Spring Boot Advanced

Alexander Erben 22

Ansatz 1: Code-First (SpringDoc OpenAPI)

Man schreibt den Code, die Doku wird daraus generiert.

@RestController
@RequestMapping("/products")
@Tag(name = "Produktverwaltung", description = "API für CRUD-Operationen an Produkten")
public class ProductController {

 @Operation(
 summary = "Produkt anhand ID abrufen",
 description = "Gibt ein Produktobjekt basierend auf der bereitgestellten ID zurück.",
 parameters = @Parameter(name = "id", description = "ID des Produkts", example = "123")
)
 @ApiResponses(value = {
 @ApiResponse(responseCode = "200", description = "Produkt gefunden",
 content = @Content(schema = @Schema(implementation = Product.class))),
 @ApiResponse(responseCode = "404", description = "Produkt nicht gefunden")
 })
 @GetMapping("/{id}")
 public Product getProduct(@PathVariable Long id) {
 return new Product(id, "Advanced Widget");
 }
}

Spring Boot Advanced

Alexander Erben 23

Ansatz 2: Contract-First

Man schreibt zuerst die OpenAPI-Spezifikation (YAML/JSON) und generiert daraus den
Code (Interfaces, DTOs).

Vorteile:

API-Design als erste Klasse: Fokus auf das API-Design, bevor implementiert

wird.

Parallele Entwicklung: Backend- und Frontend-Teams können gleichzeitig
arbeiten.

Konsistenz: API ist über alle Services hinweg konsistent.

Tool: openapi-generator-maven-plugin (oder Gradle Plugin).

Spring Boot Advanced

Alexander Erben 24

Response Wrapping mit @ControllerAdvice

Spring Boot Advanced

Alexander Erben 25

ResponseBodyAdvice

Ermöglicht das globale Wrapping aller Response Bodies – z.B. für ein einheitliches

API-Format.

{
 "success": true,
 "data": { ... }, // Der eigentliche Response
 "timestamp": "...",
 "traceId": "..."
}

Spring Boot Advanced

Alexander Erben 26

ResponseBodyAdvice Implementierung

@ControllerAdvice
public class ApiResponseWrapper implements ResponseBodyAdvice<Object> {

 @Override
 public boolean supports(MethodParameter returnType, Class converterType) {
 // Nur für eigene Controller, nicht für Actuator etc.
 return returnType.getContainingClass().getPackageName()
 .startsWith("com.example.api");
 }

 @Override
 public Object beforeBodyWrite(Object body, MethodParameter returnType,
 MediaType contentType, Class converterType,
 ServerHttpRequest request, ServerHttpResponse response) {
 // ProblemDetail nicht wrappen
 if (body instanceof ProblemDetail) return body;

 return new ApiResponse<>(true, body, Instant.now());
 }
}

Spring Boot Advanced

Alexander Erben 27

ApiResponse Record

public record ApiResponse<T>(
 boolean success,
 T data,
 Instant timestamp
) {
 public ApiResponse(boolean success, T data, Instant timestamp) {
 this.success = success;
 this.data = data;
 this.timestamp = timestamp;
 }
}

Spring Boot Advanced

Alexander Erben 28

File Upload

Spring Boot Advanced

Alexander Erben 29

Multipart File Upload

Spring Boot unterstützt Datei-Uploads über MultipartFile .

@RestController
@RequestMapping("/api/files")
public class FileUploadController {

 @PostMapping("/upload")
 public ResponseEntity<FileInfo> uploadFile(@RequestParam("file") MultipartFile file) {
 if (file.isEmpty()) {
 return ResponseEntity.badRequest().build();
 }

 String filename = StringUtils.cleanPath(file.getOriginalFilename());
 Path targetPath = Paths.get("uploads").resolve(filename);
 Files.copy(file.getInputStream(), targetPath, StandardCopyOption.REPLACE_EXISTING);

 return ResponseEntity.ok(new FileInfo(filename, file.getSize()));
 }
}

Spring Boot Advanced

Alexander Erben 30

Konfiguration für große Dateien

spring:
 servlet:
 multipart:
 enabled: true
 max-file-size: 10MB # Max. Größe pro Datei
 max-request-size: 50MB # Max. Größe des gesamten Requests
 file-size-threshold: 2KB # Ab dieser Größe auf Disk schreiben

Spring Boot Advanced

Alexander Erben 31

Mehrere Dateien hochladen

@PostMapping("/upload-multiple")
public ResponseEntity<List<FileInfo>> uploadMultiple(
 @RequestParam("files") List<MultipartFile> files) {

 List<FileInfo> results = files.stream()
 .filter(f -> !f.isEmpty())
 .map(this::saveFile)
 .toList();

 return ResponseEntity.ok(results);
}

@PostMapping("/upload-with-metadata")
public ResponseEntity<FileInfo> uploadWithMetadata(
 @RequestPart("file") MultipartFile file,
 @RequestPart("metadata") FileMetadata metadata) { // JSON Part

 // file + metadata verarbeiten
 return ResponseEntity.ok(new FileInfo(file.getOriginalFilename(), file.getSize()));
}

Spring Boot Advanced

Alexander Erben 32

API Versioning

Spring Boot Advanced

Alexander Erben 33

Warum API Versioning?

Breaking Changes: Alte Clients sollen weiter funktionieren.

Parallele Versionen: v1 und v2 gleichzeitig betreiben.

Deprecation: Sanfte Migration ermöglichen.

Spring Boot Advanced

Alexander Erben 34

Strategie 1: URL Path Versioning

Die Version ist Teil der URL.

@RestController
@RequestMapping("/api/v1/users")
public class UserControllerV1 {
 @GetMapping("/{id}")
 public UserV1 getUser(@PathVariable Long id) { ... }
}

@RestController
@RequestMapping("/api/v2/users")
public class UserControllerV2 {
 @GetMapping("/{id}")
 public UserV2 getUser(@PathVariable Long id) { ... }
}

Pro: Einfach, klar sichtbar, gut cachebar.

Con: URL-Proliferation, nicht RESTful (Resource ändert sich nicht).

Spring Boot Advanced

Alexander Erben 35

Strategie 2: Header Versioning

Version wird im Header übergeben.

@RestController
@RequestMapping("/api/users")
public class UserController {

 @GetMapping(value = "/{id}", headers = "X-API-Version=1")
 public UserV1 getUserV1(@PathVariable Long id) { ... }

 @GetMapping(value = "/{id}", headers = "X-API-Version=2")
 public UserV2 getUserV2(@PathVariable Long id) { ... }
}

Pro: Saubere URLs.

Con: Nicht im Browser testbar, Header kann vergessen werden.

Spring Boot Advanced

Alexander Erben 36

Strategie 3: Media Type Versioning

Version im Accept -Header (Content Negotiation).

@RestController
@RequestMapping("/api/users")
public class UserController {

 @GetMapping(value = "/{id}", produces = "application/vnd.myapi.v1+json")
 public UserV1 getUserV1(@PathVariable Long id) { ... }

 @GetMapping(value = "/{id}", produces = "application/vnd.myapi.v2+json")
 public UserV2 getUserV2(@PathVariable Long id) { ... }
}

Pro: RESTful, Resource-URL bleibt stabil.

Con: Komplex, schwer zu testen.

Spring Boot Advanced

Alexander Erben 37

Strategie 4: Query Parameter

@GetMapping("/{id}")
public ResponseEntity<?> getUser(
 @PathVariable Long id,
 @RequestParam(defaultValue = "1") int version) {

 return switch (version) {
 case 1 -> ResponseEntity.ok(userService.getUserV1(id));
 case 2 -> ResponseEntity.ok(userService.getUserV2(id));
 default -> ResponseEntity.badRequest().body("Unknown version");
 };
}

Pro: Einfach zu testen.
Con: Nicht standardisiert, Query-Params eigentlich für Filter.

Spring Boot Advanced

Alexander Erben 38

Empfehlung

Szenario Empfohlene Strategie

Öffentliche API URL Path (am klarsten)

Interne Microservices Header oder Media Type

Schnelle Iteration Query Parameter (pragmatisch)

Tipp: Egal welche Strategie – dokumentieren Sie Ihre Deprecation-Policy!

Spring Boot Advanced

Alexander Erben 39

Virtual Threads (Project Loom)

Spring Boot Advanced

Alexander Erben 40

Das Problem: Thread-per-Request

Klassische Servlet-Container nutzen einen Thread pro Request.

Tomcat Default: ~200 Threads

Blockierender Request: Thread wartet auf DB/API → verschwendet

Mehr Throughput? Mehr Threads → mehr RAM, Context-Switching

Lösung bisher: Reactive Programming (WebFlux) – aber komplexer Code.

Spring Boot Advanced

Alexander Erben 41

Virtual Threads: Die Lösung

Java 21 (LTS) bringt Virtual Threads – leichtgewichtige Threads, die vom JVM
verwaltet werden.

Millionen von Virtual Threads möglich

Blockieren ist OK – JVM parkt den Virtual Thread

Carrier Thread wird für andere Arbeit freigegeben

Kein reaktiver Code nötig – synchroner Stil funktioniert

Spring Boot Advanced

Alexander Erben 42

Virtual Threads aktivieren

Spring Boot 3.2+:

spring:
 threads:
 virtual:
 enabled: true

Das war's! Alle Request-Handler laufen jetzt auf Virtual Threads.

Spring Boot Advanced

Alexander Erben 43

Vorher vs. Nachher

Ohne Virtual Threads:

Request 1 → Platform Thread 1 (wartet auf DB...) ← blockiert
Request 2 → Platform Thread 2 (wartet auf DB...) ← blockiert
Request 3 → Platform Thread 3 ...
...
Request 201 → REJECTED (Thread Pool voll!)

Mit Virtual Threads:

Request 1 → Virtual Thread 1 (wartet auf DB...) ← JVM parkt
Request 2 → Virtual Thread 2 (wartet auf DB...) ← JVM parkt
...
Request 10000 → Virtual Thread 10000 ← Kein Problem!

Spring Boot Advanced

Alexander Erben 44

Wann Virtual Threads nutzen?

Szenario Empfehlung

I/O-lastige Anwendung (DB, HTTP) Virtual Threads

CPU-lastige Berechnung Platform Threads

Bestehendes WebFlux Kein Vorteil (bereits non-blocking)

Legacy-Code mit synchronized Testen! (Pinning-Problem)

Spring Boot Advanced

Alexander Erben 45

Das Pinning-Problem

Virtual Threads können gepinnt werden, wenn sie einen synchronized -Block
betreten.

// Problematisch: Virtual Thread wird an Carrier gepinnt
synchronized (lock) {
 blockingDatabaseCall(); // Carrier Thread blockiert!
}

// Besser: ReentrantLock verwenden
lock.lock();
try {
 blockingDatabaseCall(); // Virtual Thread kann yielden
} finally {
 lock.unlock();
}

Diagnose: -Djdk.tracePinnedThreads=short

Spring Boot Advanced

Alexander Erben 46

Virtual Threads mit @Async

Auch @Async -Methoden können Virtual Threads nutzen:

@Configuration
@EnableAsync
public class AsyncConfig {

 @Bean
 public Executor taskExecutor() {
 return Executors.newVirtualThreadPerTaskExecutor();
 }
}

@Service
public class EmailService {

 @Async
 public CompletableFuture<Void> sendEmailAsync(String to, String content) {
 // Läuft auf Virtual Thread
 emailClient.send(to, content);

Spring Boot Advanced

Alexander Erben 47

Virtual Threads: Caveats

1. ThreadLocal: Vorsicht bei großem ThreadLocal-Speicher (Millionen Threads!)

2. Native Code: JNI-Calls können Virtual Threads pinnen

3. Monitoring: Thread-Dumps zeigen sehr viele Threads

4. Connection Pools: Können zum Bottleneck werden (Pool < Virtual Threads)

Connection Pool anpassen
spring:
 datasource:
 hikari:
 maximum-pool-size: 50 # Erhöhen, aber DB-Limits beachten!

Spring Boot Advanced

Alexander Erben 48

Structured Concurrency (Preview)

Java 21+ bietet auch Structured Concurrency für parallele Tasks:

try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
 Supplier<User> userTask = scope.fork(() -> userService.getUser(id));
 Supplier<List<Order>> ordersTask = scope.fork(() -> orderService.getOrders(id));

 scope.join(); // Warte auf alle
 scope.throwIfFailed(); // Exception bei Fehler

 return new UserProfile(userTask.get(), ordersTask.get());
}

Vorteil: Alle Subtasks werden bei Fehler automatisch abgebrochen.

Spring Boot Advanced

Alexander Erben 49

