
Spring Boot Actuator

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Actuator-Grundlagen: wichtige Endpunkte, Exponierung & Absicherung

Management-Konfiguration: Base-Path, Ports, Security

Metriken mit Micrometer: Counter, Gauge, Timer, DistributionSummary

Health & Probes: Custom HealthIndicator, Liveness/Readiness

Custom Endpoints und Prometheus/Grafana Integration

Observability: Micrometer Tracing (OTel Bridge), HTTP/Messaging Propagation

@Observed Annotation

Exemplars (Metrics Traces Korrelation)

Spring Boot Advanced

Alexander Erben 2

Was ist Actuator?

Bietet "production-ready" Features für Monitoring und Management.

Erlaubt das Überwachen, Sammeln von Metriken, Verstehen des Application-
Zustands.

Exponiert Daten über HTTP-Endpoints oder JMX.

Dependency: spring-boot-starter-actuator

Spring Boot Advanced

Alexander Erben 3

Wichtige Endpunkte

/actuator/health : Zeigt den Gesundheitszustand der Anwendung und
integrierter Komponenten (DB, Disk, etc.).

/actuator/info : Allgemeine Informationen (Build-Version, Git-Commit).

/actuator/metrics : Listet verfügbare Metriken.

/actuator/shutdown : Beendet die Anwendung (standardmäßig deaktiviert).

Spring Boot Advanced

Alexander Erben 4

Exponieren und Absichern von Endpoints

Standardmäßig sind nur /health und /info exponiert.
application.yml Konfiguration:

management:
 endpoints:
 web:
 exposure:
 include: health,info,metrics # Oder '*' für alle
 exclude: shutdown # Sicherheitsrisiko!
 base-path: /manage # Ändert den Basis-Pfad (z.B. /manage/health)
 health:
 show-details: always # Details immer anzeigen
 endpoint:
 shutdown:
 enabled: true # Muss explizit aktiviert werden

Spring Boot Advanced

Alexander Erben 5

Security für Actuator

@Configuration @EnableWebSecurity
public class ActuatorSecurity {

 // Import: org.springframework.boot.actuate.autoconfigure.security.servlet.EndpointRequest
 @Bean
 public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http.authorizeHttpRequests(auth -> auth
 .requestMatchers(EndpointRequest.toAnyEndpoint()).hasRole("ADMIN") // Nur Admins
 .anyRequest().permitAll()
)
 .build();
 }
}

Spring Boot Advanced

Alexander Erben 6

Runtime Log-Level Anpassung

Man kann den Log-Level einzelner Pakete zur Laufzeit ändern, ohne Neustart.

Request:
POST /actuator/loggers/com.example.service

{
 "configuredLevel": "DEBUG"
}

Spring Boot Advanced

Alexander Erben 7

Custom Metrics mit Micrometer

Spring Boot Advanced

Alexander Erben 8

Micrometer

Micrometer ist die Metrik-Fassade von Spring Boot, die verschiedene Monitoring-

Systeme unterstützt (Prometheus, Datadog, etc.).

Meter-Typen

Counter : Zählt Inkremente (z.B. Fehler, abgeschlossene Vorgänge).

Gauge : Zeigt den aktuellen Wert an (z.B. Anzahl der Elemente in einer Queue,
CPU-Auslastung).

Timer : Misst die Dauer von Operationen.

DistributionSummary : Misst die Verteilung von Werten (z.B. Dateigrößen).

Spring Boot Advanced

Alexander Erben 9

Beispiel: Counter

@Service
public class OrderService {

 private final Counter orderProcessedCounter;
 private final Counter orderFailedCounter;

 public OrderService(MeterRegistry meterRegistry) {
 this.orderProcessedCounter = meterRegistry.counter("orders.processed", "status", "success");
 this.orderFailedCounter = meterRegistry.counter("orders.processed", "status", "failed");
 }

 public Order processOrder(Order order) {
 try {
 // ...
 orderProcessedCounter.increment();
 return order;
 } catch (Exception e) {
 orderFailedCounter.increment();
 throw e;
 }
 }
}

Spring Boot Advanced

Alexander Erben 10

Beispiel: Timer programmatisch oder deklarativ

@Service
public class OrderService {

 private final Timer orderProcessingTimer;

 public OrderService(MeterRegistry meterRegistry) {
 this.orderProcessingTimer = meterRegistry.timer("orders.processing.duration");
 }

 public Order processOrder(Order order) {
 return orderProcessingTimer.record(() -> {
 // ...
 });
 }

 @Timed(value = "order.creation.time", description = "Zeit für das Erstellen einer Bestellung")
 public Order createOrder(Order order) {
 // ... Logik
 return order;
 }
}

Spring Boot Advanced

Alexander Erben 11

Health Indicator
Standardmäßig prüft Spring Boot die Datenbank, Disk Space etc. Man kann aber

eigene Gesundheitschecks hinzufügen.

Spring Boot Advanced

Alexander Erben 12

Kubernetes Probes (Liveness & Readiness)

In Kubernetes reicht ein einfaches "Health: UP" oft nicht.

Liveness Probe: "Lebt der Container noch?". Wenn nein -> Container Restart.

Pfad: /actuator/health/liveness

Readiness Probe: "Kann der Container Traffic annehmen?". Wenn nein -> Kein

Traffic vom Service.
Pfad: /actuator/health/readiness

Aktivierung:
management.endpoint.health.probes.enabled=true

Spring Boot Advanced

Alexander Erben 13

Custom HealthIndicator

@Component
public class CustomServiceHealthIndicator implements HealthIndicator {

 @Override
 public Health health() {
 if (isServiceUp()) {
 return Health.up().withDetail("service.version", "1.0.0").build();
 } else {
 return Health.down()
 .withDetail("error.message", "Verbindung zu externem Service fehlgeschlagen")
 .withDetail("last.attempt", LocalDateTime.now())
 .build();
 }
 }

 private boolean isServiceUp() { /** Implementierung **/}
}

Dieser Health Check erscheint dann unter /actuator/health als customService: {
"status": "UP", ... } .

Spring Boot Advanced

Alexander Erben 14

Custom Actuator Endpoints

Für spezielle Management-Operationen, die nicht von den Standard-Endpoints abgedeckt werden.

@Component
@Endpoint(id = "featureToggle") // Der Pfad wird /actuator/featureToggle
public class FeatureToggleEndpoint {

 private boolean featureEnabled = false;

 @ReadOperation // GET /actuator/featureToggle
 public Map<String, Object> getFeatureStatus() {
 return Map.of("featureEnabled", featureEnabled);
 }

 @WriteOperation // POST /actuator/featureToggle (mit Body)
 public Map<String, Object> setFeatureStatus(@Selector String featureName, boolean enabled) {
 if ("myAdvancedFeature".equals(featureName)) {
 this.featureEnabled = enabled;
 return Map.of("status", "updated", "feature", featureName, "enabled", enabled);
 }
 return Map.of("status", "error", "message", "Unknown feature: " + featureName);
 }
}

Spring Boot Advanced

Alexander Erben 15

Custom Endpoint-Operationen

@Endpoint(id = "...") : Definiert den Basis-Pfad des Endpoints.

@ReadOperation : GET-Operation.

@WriteOperation : POST-Operation.

@DeleteOperation : DELETE-Operation.

@Selector : Ermöglicht Pfad-Variablen (z.B.
/actuator/featureToggle/{featureName}).

Spring Boot Advanced

Alexander Erben 16

Prometheus & Grafana Integration

Prometheus

Ein Open-Source-Monitoring-System, das Metriken "abfragt" (scraped).

1. Dependency: io.micrometer:micrometer-registry-prometheus

2. Endpoint: Spring Boot exponiert einen /actuator/prometheus Endpoint im

Prometheus-Format.
Prometheus wird so konfiguriert, dass es diesen Endpoint regelmäßig abfragt.

Spring Boot Advanced

Alexander Erben 17

Grafana

Eine Open-Source-Plattform für Analysen und interaktive Dashboards.

Verbindet sich mit Prometheus als Datenquelle.

Visualisiert die Metriken in Dashboards (z.B. JVM-Metriken, Custom Metrics).

Ablauf:

1. Spring Boot App generiert Metriken über Micrometer.

2. /actuator/prometheus liefert diese im Prometheus-Format.

3. Prometheus scraped (holt) die Daten regelmäßig von diesem Endpoint.

4. Grafana fragt Prometheus ab und visualisiert die Daten.

Spring Boot Advanced

Alexander Erben 18

Distributed Tracing & Observability

Spring Boot Advanced

Alexander Erben 19

Von Sleuth zu Micrometer Tracing

In Spring Boot 3 wurde Spring Cloud Sleuth durch Micrometer Tracing abgelöst.

Ziel: Einen Request über mehrere Microservices hinweg verfolgen.

Trace ID: Eindeutige ID für den gesamten Request-Flow.

Span ID: ID für einen einzelnen Arbeitsschritt (z.B. Service A ruft Service B).

Log Korrelation:
Die IDs werden automatisch in die Logs geschrieben (MDC), sodass man in
Kibana/Splunk nach einer TraceID filtern kann.

Spring Boot Advanced

Alexander Erben 20

Tracing Setup

Benötigte Dependencies (für OpenTelemetry Standard):

<!-- Die Fassade -->
<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>
<!-- Der Exporter (z.B. zu Zipkin oder Jaeger) -->
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-zipkin</artifactId>
</dependency>

Spring Boot konfiguriert den Tracer automatisch, sobald die Bridge im Classpath liegt.

Spring Boot Advanced

Alexander Erben 21

Context Propagation

Damit der Zusammenhang zwischen Requests über Services hinweg erkannt werden
kann, müssen Trace-IDs übertragen werden.

W3C TraceContext: Der neue Standard (Default in Boot 3 / OTel).
Header: traceparent

B3 Headers: Der alte Zipkin/Sleuth Standard.

Header: X-B3-TraceId , X-B3-SpanId

Wichtig: Wenn alte Services (Sleuth) mit neuen (Boot 3) zusammenarbeiten, muss

man oft das Format anpassen:
management.tracing.propagation.type=b3

Spring Boot Advanced

Alexander Erben 22

HTTP Propagation

Spring Boot instrumentiert automatisch:

RestTemplate / TestRestTemplate

WebClient

RestClient (neu)

Voraussetzung: Man darf new RestTemplate() nicht selbst aufrufen, sondern muss

den Builder nutzen!

@Bean
public RestTemplate restTemplate(RestTemplateBuilder builder) {
 // Der Builder fügt Interceptors hinzu, die den 'traceparent' Header setzen
 return builder.build();
}

Spring Boot Advanced

Alexander Erben 23

Propagation über Messaging (JMS / Kafka)

Der Trace-Kontext kann ähnlich wie bei HTTP auch mit den Headern einer Nachricht im
Messaging propagiert werden. Das folgende Beispiel zeigt, wie das bei JMS

funktioniert.

Spring Boot Advanced

Alexander Erben 24

Producer (JMS)

@Autowired JmsTemplate jmsTemplate; // Automatisch instrumentiert

public void send() {
 // Schreibt 'traceparent' in die JMS Properties
 jmsTemplate.convertAndSend("queue.orders", new OrderCmd());
}

Consumer

@JmsListener(destination = "queue.orders")
public void onMessage(OrderCmd cmd) {
 // Liest 'traceparent', setzt den Context fort
 // und erzeugt einen neuen Child-Span
 log.info("Processing order"); // TraceId ist im Log!
}

Spring Boot Advanced

Alexander Erben 25

Programmatisches Tracing (Observation API)

Die Observation API (seit Boot 3) vereinheitlicht Metrics und Tracing.

@Autowired ObservationRegistry registry;

public void doWork() {
 Observation.createNotStarted("my.custom.operation", registry)
 .lowCardinalityKeyValue("type", "batch")
 .observe(() -> {
 // Code hier wird gemessen (Timer)
 // UND getraced (Span)
 heavyCalculation();
 });
}

Spring Boot Advanced

Alexander Erben 26

@Observed Annotation

Die deklarative Alternative zur programmatischen Observation API.

@Service
public class OrderService {

 @Observed(
 name = "order.processing",
 contextualName = "process-order",
 lowCardinalityKeyValues = {"orderType", "standard"}
)
 public Order processOrder(Order order) {
 // Automatisch: Timer-Metrik + Trace-Span
 return doProcessing(order);
 }
}

Voraussetzung: @EnableAspectJAutoProxy und ObservedAspect Bean.

Spring Boot Advanced

Alexander Erben 27

ObservedAspect konfigurieren

@Configuration
public class ObservabilityConfig {

 @Bean
 public ObservedAspect observedAspect(ObservationRegistry registry) {
 return new ObservedAspect(registry);
 }
}

Alternativ: spring-boot-starter-aop + Auto-Configuration in Boot 3.2+.

Spring Boot Advanced

Alexander Erben 28

@Observed vs. Programmatisch

Aspekt @Observed Observation API

Boilerplate Minimal Mehr Code

Flexibilität Standard-Werte Volle Kontrolle

Dynamische Tags Nein Ja

Error Handling Automatisch Manuell möglich

Empfehlung: @Observed für Standard-Fälle, API für komplexe Szenarien.

Spring Boot Advanced

Alexander Erben 29

Exemplars

Spring Boot Advanced

Alexander Erben 30

Was sind Exemplars?

Exemplars verbinden Metriken mit Traces.

Problem: Hohe Latenz in Metrik sichtbar, aber welcher Request war es?

Lösung: Exemplar speichert traceId als Referenz zur Metrik.

http_request_duration_seconds{...} 0.5 # {traceId="abc123"}

Spring Boot Advanced

Alexander Erben 31

Exemplars aktivieren

management:
 metrics:
 distribution:
 percentiles-histogram:
 http.server.requests: true
 prometheus:
 metrics:
 export:
 enabled: true
 tracing:
 sampling:
 probability: 1.0 # 100% Sampling für Demo

Dependency: io.micrometer:micrometer-tracing-bridge-otel

Spring Boot Advanced

Alexander Erben 32

Exemplars in Prometheus/Grafana

In Grafana können Exemplars als Punkte auf Histogrammen angezeigt werden.

1. Prometheus scrapet Metriken mit Exemplars

2. Grafana zeigt Histogramm + Exemplar-Punkte

3. Klick auf Exemplar → Link zu Trace in Jaeger/Zipkin/Tempo

Ablauf:

Metrik (hohe Latenz) → Exemplar (traceId) → Trace → Root Cause

Spring Boot Advanced

Alexander Erben 33

Exemplar-Konfiguration (Detail)

@Configuration
public class ExemplarConfig {

 @Bean
 public DefaultExemplarSampler exemplarSampler(SpanContextSupplier supplier) {
 // Nur bei aktiven Traces Exemplars erzeugen
 return new DefaultExemplarSampler(supplier);
 }
}

Spring Boot 3.2+ konfiguriert dies automatisch, wenn Tracing aktiv ist.

Spring Boot Advanced

Alexander Erben 34

