Spring Boot Advanced

Spring Boot Actuator

Alexander Erben

Spring Boot Advanced

In diesem Modul

e Actuator-Grundlagen: wichtige Endpunkte, Exponierung & Absicherung

 Management-Konfiguration: Base-Path, Ports, Security

Metriken mit Micrometer: Counter, Gauge, Timer, DistributionSummary

Health & Probes: Custom Healthindicator, Liveness/Readiness

Custom Endpoints und Prometheus/Grafana Integration

Observabllity: Micrometer Tracing (OTel Bridge), HTTP/Messaging Propagation
e @Observed Annotation

Exemplars (Metrics &4 Traces Korrelation)

Alexander Erben

Spring Boot Advanced

Was ist Actuator?

e Bietet "production-ready" Features fir Monitoring und Management.

 Erlaubt das Uberwachen, Sammeln von Metriken, Verstehen des Application-
Zustands.

e Exponiert Daten Uber HTTP-Endpoints oder JMX.

Dependency: spring-boot-starter-actuator

Alexander Erben

Spring Boot Advanced

Wichtige Endpunkte

e /actuator/health : Zeigt den Gesundheitszustand der Anwendung und
integrierter Komponenten (DB, Disk, etc.).

e /actuator/info : Allgemeine Informationen (Build-Version, Git-Commit).
e /actuator/metrics : Listet verfligbare Metriken.

e /actuator/shutdown : Beendet die Anwendung (standardmalflig deaktiviert).

Alexander Erben

Spring Boot Advanced

Exponieren und Absichern von Endpoints

Standardmaliig sind nur /health und /info exponiert.
application.yml Konfiguration:

management :
endpoints:
web:
exposure:
include: health,info,metrics # Oder '*' flr alle
exclude: shutdown # Sicherheitsrisiko!
base-path: /manage # Andert den Basis-Pfad (z.B. /manage/health)
health:
show-details: always # Detaills immer anzeigen
endpoint:
shutdown:
enabled: true # Muss explizit aktiviert werden

Alexander Erben

Spring Boot Advanced

Security flr Actuator

@Configuration @EnableWebSecurity
public class ActuatorSecurity {

// Import: org.springframework.boot.actuate.autoconfigure.security.servlet.EndpointRequest
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http.authorizeHttpRequests(auth -> auth
.requestMatchers(EndpointRequest. toAnyEndpoint()).hasRole("ADMIN") // Nur Admins
.anyRequest().permitAll()

)
build();

Alexander Erben

Spring Boot Advanced

Runtime Log-Level Anpassung

Man kann den Log-Level einzelner Pakete zur Laufzeit andern, ohne Neustart.

Request:

POST /actuator/loggers/com.example.service

{
"configuredLevel": "DEBUG"

}

Alexander Erben

Spring Boot Advanced

Custom Metrics mit Micrometer

Alexander Erben

Spring Boot Advanced

Micrometer

Micrometer ist die Metrik-Fassade von Spring Boot, die verschiedene Monitoring-
Systeme unterstltzt (Prometheus, Datadog, etc.).

Meter-Typen

e Counter : Zahlt Inkremente (z.B. Fehler, abgeschlossene Vorgange).

e Gauge . Zeigt den aktuellen Wert an (z.B. Anzahl der Elemente in einer Queue,
CPU-Auslastung).

e Timer : Misst die Dauer von Operationen.

e DistributionSummary : Misst die Verteilung von Werten (z.B. Dateigrof3en).

Alexander Erben

Spring Boot Advanced

Beispiel: Counter

@Service
public class OrderService {

private final Counter orderProcessedCounter;
private final Counter orderFailedCounter;

public OrderService(MeterRegistry meterRegistry) {
this.orderProcessedCounter = meterRegistry.counter("orders.processed",

this.orderFailedCounter = meterRegistry.counter("orders.processed", "status",

¥
public Order processOrder(Order order) {
try {
//
orderProcessedCounter.increment();
return order;
} catch (Exception e) {
orderFailedCounter.increment();
throw e;
}
¥

Alexander Erben

"status",

"success");

"failed");

10

Spring Boot Advanced

Beispiel: Timer programmatisch oder deklarativ

@Service
public class OrderService {

private final Timer orderProcessingTimer;
public OrderService(MeterRegistry meterRegistry) {

this.orderProcessingTimer = meterRegistry.timer("orders.processing.duration");
b

public Order processOrder(Order order) {
return orderProcessingTimer.record(() -> {

//

1)
b
@Timed(value = "order.creation.time", description = "Zeit flr das Erstellen einer Bestellung")
public Order createOrder(Order order) {

// ... Logik

return order;
}

Alexander Erben

11

Spring Boot Advanced

Health Indicator

Standardmaliig pruft Spring Boot die Datenbank, Disk Space etc. Man kann aber
eigene Gesundheitschecks hinzufligen.

Alexander Erben

12

Spring Boot Advanced

Kubernetes Probes (Liveness & Readiness)

In Kubernetes reicht ein einfaches "Health: UP" oft nicht.

e Liveness Probe: "Lebt der Container noch?". Wenn nein -> Container Restart.
o Pfad: /actuator/health/liveness

e Readiness Probe: "Kann der Container Traffic annehmen?". Wenn nein -> Kein
Traffic vom Service.
o Pfad: /actuator/health/readiness

Aktivierung:

management.endpoint.health.probes.enabled=true

Alexander Erben

13

Spring Boot Advanced
Custom Healthindicator

@Component
public class CustomServiceHealthIndicator implements HealthIndicator {

@Override
public Health health() {
if (isServiceUp()) {
return Health.up().withDetail("service.version", "1.0.0").build();
} else {
return Health.down()

.withDetail("error.message", "Verbindung zu externem Service fehlgeschlagen")

.withDetail("last.attempt", LocalDateTime.now())
Lbuild();

}

private boolean isServiceUp() { /** Implementierung **/}

Dieser Health Check erscheint dann unter /actuator/health als customService:

"status": "UP", ... }.

Alexander Erben

{

14

Spring Boot Advanced

Custom Actuator Endpoints

Fur spezielle Management-Operationen, die nicht von den Standard-Endpoints abgedeckt werden.

@Component
@Endpoint(id = "featureToggle") // Der Pfad wird /actuator/featureToggle

public class FeatureToggleEndpoint {
private boolean featureEnabled = false;

@ReadOperation // GET /actuator/featureToggle

public Map<String, Object> getFeatureStatus() {
return Map.of("featureEnabled", featureEnabled);

b

@WriteOperation // POST /actuator/featureToggle (mit Body)
public Map<String, Object> setFeatureStatus(@Selector String featureName, boolean enabled) {
if ("myAdvancedFeature'".equals(featureName)) {
this.featureEnabled = enabled;
return Map.of("status", "updated", "feature'", featureName, "enabled", enabled);

}

return Map.of("status", "error", "message", "Unknown feature: " + featureName);

15

Alexander Erben

Spring Boot Advanced

Custom Endpoint-Operationen

e @Endpoint(id = "...") : Definiert den Basis-Pfad des Endpoints.
e @ReadOperation : GET-Operation.

e @writeOperation : POST-Operation.

e @DeleteOperation : DELETE-Operation.

e @Selector : Ermoglicht Pfad-Variablen (z.B.
/actuator/featureToggle/{featureName}).

Alexander Erben

16

Spring Boot Advanced

Prometheus & Grafana Integration

Prometheus
Ein Open-Source-Monitoring-System, das Metriken "abfragt" (scraped).

1. Dependency: io.micrometer:micrometer-registry-prometheus

2. Endpoint: Spring Boot exponiert einen /actuator/prometheus Endpoint im
Prometheus-Format.
Prometheus wird so konfiguriert, dass es diesen Endpoint regelmalig abfragt.

Alexander Erben

17

Spring Boot Advanced

Grafana

Eine Open-Source-Plattform flr Analysen und interaktive Dashboards.

e Verbindet sich mit Prometheus als Datenquelle.

e Visualisiert die Metriken in Dashboards (z.B. JVM-Metriken, Custom Metrics).

Ablauf:

1. Spring Boot App generiert Metriken tber Micrometer.
2. /actuator/prometheus liefert diese im Prometheus-Format.
3. Prometheus scraped (holt) die Daten regelmaliig von diesem Endpoint.

4. Grafana fragt Prometheus ab und visualisiert die Daten.

Alexander Erben

18

Spring Boot Advanced

Distributed Tracing & Observability

Alexander Erben

19

Spring Boot Advanced

Von Sleuth zu Micrometer Tracing

In Spring Boot 3 wurde Spring Cloud Sleuth durch Micrometer Tracing abgelost.

e Ziel: Einen Request Uber mehrere Microservices hinweg verfolgen.

e Trace ID: Eindeutige ID fur den gesamten Request-Flow.

e Span ID: ID fur einen einzelnen Arbeitsschritt (z.B. Service A ruft Service B).
Log Korrelation:

Die IDs werden automatisch in die Logs geschrieben (MDC), sodass man in
Kibana/Splunk nach einer TracelD filtern kann.

Alexander Erben

20

Spring Boot Advanced

Tracing Setup
Benotigte Dependencies (fur OpenTelemetry Standard):

<!-- Dlie Fassade -->
<dependency>
<groupId>io.micrometer</groupIld>
<artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>
<!-- Der Exporter (z.B. zu Zipkin oder Jaeger) -->
<dependency>
<groupId>io.opentelemetry</groupId>
<artifactId>opentelemetry-exporter-zipkin</artifactId>
</dependency>

Spring Boot konfiguriert den Tracer automatisch, sobald die Bridge im Classpath liegt.

Alexander Erben

21

Spring Boot Advanced

Context Propagation

Damit der Zusammenhang zwischen Requests Uber Services hinweg erkannt werden
kann, miussen Trace-IDs Ubertragen werden.

e W3C TraceContext: Der neue Standard (Default in Boot 3 / OTel).
o Header: traceparent

B3 Headers: Der alte Zipkin/Sleuth Standard.
o Header: X-B3-Traceld , X-B3-SpanId

Wichtig: Wenn alte Services (Sleuth) mit neuen (Boot 3) zusammenarbeiten, muss
man oft das Format anpassen:

management.tracing.propagation.type=b3

Alexander Erben

22

Spring Boot Advanced

HTTP Propagation

Spring Boot instrumentiert automatisch:

e RestTemplate / TestRestTemplate
e WebClient
e RestClient (neu)

Voraussetzung: Man darf new RestTemplate() hicht selbst aufrufen, sondern muss
den Builder nutzen!

@Bean
public RestTemplate restTemplate(RestTemplateBuilder builder) {

// Der Builder fugt Interceptors hinzu, die den 'traceparent' Header setzen
return builder.build();

Alexander Erben

23

Spring Boot Advanced

Propagation liber Messaging (JMS | Kafka)

Der Trace-Kontext kann ahnlich wie bel HTTP auch mit den Headern einer Nachricht im
Messaging propagiert werden. Das folgende Beispiel zeigt, wie das bei JIMS
funktioniert.

Alexander Erben

24

Spring Boot Advanced

Producer (JMS)

@Autowired JmsTemplate jmsTemplate; // Automatisch instrumentiert

public void send() {
// Schreibt 'traceparent' in die JMS Properties
jmsTemplate.convertAndSend("queue.orders", new OrderCmd());

Consumer

@IJmsListener(destination = "queue.orders")

public void onMessage(OrderCmd cmd) {
// Liest 'traceparent', setzt den Context fort
// und erzeugt einen neuen Child-Span
log.info("Processing order"); // Traceld ist im Log!

Alexander Erben

25

Spring Boot Advanced

Programmatisches Tracing (Observation API)
Die Observation API (seit Boot 3) vereinheitlicht Metrics und Tracing.

@Autowired ObservationRegistry registry;

public void dowork() {
Observation.createNotStarted("my.custom.operation", registry)
.lowCardinalityKeyVvalue("type", "batch")
.observe(() -> {
// Code hier wird gemessen (Timer)
// UND getraced (Span)
heavyCalculation();

1)

Alexander Erben

26

Spring Boot Advanced

@Observed Annotation

Die deklarative Alternative zur programmatischen Observation API.

@Service
public class OrderService {

@Observed(
name = "order.processing",
contextualName = "process-order",

lowCardinalityKeyValues = {"orderType", "standard"}
)

public Order processOrder(Order order) {
// Automatisch: Timer-Metrik + Trace-Span
return doProcessing(order);

Voraussetzung: @EnableAspectJAutoProxy und ObservedAspect Bean.

Alexander Erben

27

Spring Boot Advanced

ObservedAspect konfigurieren

@Configuration
public class ObservabilityConfig {

@Bean

public ObservedAspect observedAspect(ObservationRegistry registry) {
return new ObservedAspect(registry);

¥

Alternativ. spring-boot-starter-aop + Auto-Configuration in Boot 3.2+.

Alexander Erben

28

Spring Boot Advanced

@Observed vs. Programmatisch

Aspekt @Observed Observation API
Boilerplate Minimal Mehr Code
Flexibilitat Standard-Werte Volle Kontrolle
Dynamische Tags Nein Ja
Error Handling Automatisch Manuell moglich

Empfehlung: @observed fur Standard-Falle, API fir komplexe Szenarien.

Alexander Erben

29

Spring Boot Advanced

Exemplars

Alexander Erben

30

Spring Boot Advanced

Was sind Exemplars?

Exemplars verbinden Metriken mit Traces.

e Problem: Hohe Latenz in Metrik sichtbar, aber welcher Request war es?

e LOsung: Exemplar speichert traceld als Referenz zur Metrik.

http_request_duration_seconds{...} 0.5 # {traceld="abc123"}

Alexander Erben

31

Spring Boot Advanced

Exemplars aktivieren

management:
metrics:
distribution:
percentiles-histogram:
http.server.requests: true
prometheus:
metrics:
export:
enabled: true
tracing:
sampling:
probability: 1.0 # 100% Sampling fur Demo

Dependency: io.micrometer:micrometer-tracing-bridge-otel

Alexander Erben

32

Spring Boot Advanced

Exemplars in Prometheus/Grafana

In Grafana kbnnen Exemplars als Punkte auf Histogrammen angezeigt werden.

1. Prometheus scrapet Metriken mit Exemplars
2. Grafana zeigt Histogramm + Exemplar-Punkte

3. Klick auf Exemplar — Link zu Trace in Jaeger/Zipkin/Tempo

Ablauf:

Metrik (hohe Latenz) - Exemplar (traceld) - Trace - Root Cause

Alexander Erben

33

Spring Boot Advanced

Exemplar-Konfiguration (Detail)
@Configuration
public class ExemplarConfig {
@Bean
public DefaultExemplarSampler exemplarSampler (SpanContextSupplier supplier) {

// Nur bei aktiven Traces Exemplars erzeugen
return new DefaultExemplarSampler(supplier);

Spring Boot 3.2+ konfiguriert dies automatisch, wenn Tracing aktiv ist.

Alexander Erben

34

