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Spring Boot Advanced

In diesem Modul

e Actuator-Grundlagen: wichtige Endpunkte, Exponierung & Absicherung

 Management-Konfiguration: Base-Path, Ports, Security

Metriken mit Micrometer: Counter, Gauge, Timer, DistributionSummary

Health & Probes: Custom Healthindicator, Liveness/Readiness

Custom Endpoints und Prometheus/Grafana Integration

Observabllity: Micrometer Tracing (OTel Bridge), HTTP/Messaging Propagation
e @Observed Annotation

Exemplars (Metrics &4 Traces Korrelation)
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Was ist Actuator?

e Bietet "production-ready" Features fir Monitoring und Management.

 Erlaubt das Uberwachen, Sammeln von Metriken, Verstehen des Application-
Zustands.

e Exponiert Daten Uber HTTP-Endpoints oder JMX.

Dependency: spring-boot-starter-actuator
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Wichtige Endpunkte

e /actuator/health : Zeigt den Gesundheitszustand der Anwendung und
integrierter Komponenten (DB, Disk, etc.).

e /actuator/info : Allgemeine Informationen (Build-Version, Git-Commit).
e /actuator/metrics : Listet verfligbare Metriken.

e /actuator/shutdown : Beendet die Anwendung (standardmalflig deaktiviert).

Alexander Erben



Spring Boot Advanced

Exponieren und Absichern von Endpoints

Standardmaliig sind nur /health und /info exponiert.
application.yml Konfiguration:

management :
endpoints:
web:
exposure:
include: health,info,metrics # Oder '*' flr alle
exclude: shutdown # Sicherheitsrisiko!
base-path: /manage # Andert den Basis-Pfad (z.B. /manage/health)
health:
show-details: always # Detaills immer anzeigen
endpoint:
shutdown:
enabled: true # Muss explizit aktiviert werden
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Security flr Actuator

@Configuration @EnableWebSecurity
public class ActuatorSecurity {

// Import: org.springframework.boot.actuate.autoconfigure.security.servlet.EndpointRequest
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http.authorizeHttpRequests(auth -> auth
.requestMatchers(EndpointRequest. toAnyEndpoint()).hasRole("ADMIN") // Nur Admins
.anyRequest().permitAll()

)
build();
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Runtime Log-Level Anpassung

Man kann den Log-Level einzelner Pakete zur Laufzeit andern, ohne Neustart.

Request:

POST /actuator/loggers/com.example.service

{
"configuredLevel": "DEBUG"

}
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Custom Metrics mit Micrometer
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Micrometer

Micrometer ist die Metrik-Fassade von Spring Boot, die verschiedene Monitoring-
Systeme unterstltzt (Prometheus, Datadog, etc.).

Meter-Typen

e Counter : Zahlt Inkremente (z.B. Fehler, abgeschlossene Vorgange).

e Gauge . Zeigt den aktuellen Wert an (z.B. Anzahl der Elemente in einer Queue,
CPU-Auslastung).

e Timer : Misst die Dauer von Operationen.

e DistributionSummary : Misst die Verteilung von Werten (z.B. Dateigrof3en).
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Beispiel: Counter

@Service
public class OrderService {

private final Counter orderProcessedCounter;
private final Counter orderFailedCounter;

public OrderService(MeterRegistry meterRegistry) {
this.orderProcessedCounter = meterRegistry.counter("orders.processed",

this.orderFailedCounter = meterRegistry.counter("orders.processed", "status",

¥
public Order processOrder(Order order) {
try {
//
orderProcessedCounter.increment();
return order;
} catch (Exception e) {
orderFailedCounter.increment();
throw e;
}
¥
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Beispiel: Timer programmatisch oder deklarativ

@Service
public class OrderService {

private final Timer orderProcessingTimer;
public OrderService(MeterRegistry meterRegistry) {

this.orderProcessingTimer = meterRegistry.timer("orders.processing.duration");
b

public Order processOrder(Order order) {
return orderProcessingTimer.record(() -> {

//

1)
b
@Timed(value = "order.creation.time", description = "Zeit flr das Erstellen einer Bestellung")
public Order createOrder(Order order) {

// ... Logik

return order;
}
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Health Indicator

Standardmaliig pruft Spring Boot die Datenbank, Disk Space etc. Man kann aber
eigene Gesundheitschecks hinzufligen.

Alexander Erben

12



Spring Boot Advanced

Kubernetes Probes (Liveness & Readiness)

In Kubernetes reicht ein einfaches "Health: UP" oft nicht.

e Liveness Probe: "Lebt der Container noch?". Wenn nein -> Container Restart.
o Pfad: /actuator/health/liveness

e Readiness Probe: "Kann der Container Traffic annehmen?". Wenn nein -> Kein
Traffic vom Service.
o Pfad: /actuator/health/readiness

Aktivierung:

management.endpoint.health.probes.enabled=true
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Custom Healthindicator

@Component
public class CustomServiceHealthIndicator implements HealthIndicator {

@Override
public Health health() {
if (isServiceUp()) {
return Health.up().withDetail("service.version", "1.0.0").build();
} else {
return Health.down()

.withDetail("error.message", "Verbindung zu externem Service fehlgeschlagen")

.withDetail("last.attempt", LocalDateTime.now())
Lbuild();

}

private boolean isServiceUp() { /** Implementierung **/}

Dieser Health Check erscheint dann unter /actuator/health als customService:

"status": "UP", ... }.
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Custom Actuator Endpoints

Fur spezielle Management-Operationen, die nicht von den Standard-Endpoints abgedeckt werden.

@Component
@Endpoint(id = "featureToggle") // Der Pfad wird /actuator/featureToggle

public class FeatureToggleEndpoint {
private boolean featureEnabled = false;

@ReadOperation // GET /actuator/featureToggle

public Map<String, Object> getFeatureStatus() {
return Map.of("featureEnabled", featureEnabled);

b

@WriteOperation // POST /actuator/featureToggle (mit Body)
public Map<String, Object> setFeatureStatus(@Selector String featureName, boolean enabled) {
if ("myAdvancedFeature'".equals(featureName)) {
this.featureEnabled = enabled;
return Map.of("status", "updated", "feature'", featureName, "enabled", enabled);

}

return Map.of("status", "error", "message", "Unknown feature: " + featureName);
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Custom Endpoint-Operationen

e @Endpoint(id = "...") : Definiert den Basis-Pfad des Endpoints.
e @ReadOperation : GET-Operation.

e @writeOperation : POST-Operation.

e @DeleteOperation : DELETE-Operation.

e @Selector : Ermoglicht Pfad-Variablen (z.B.
/actuator/featureToggle/{featureName} ).

Alexander Erben

16



Spring Boot Advanced

Prometheus & Grafana Integration

Prometheus
Ein Open-Source-Monitoring-System, das Metriken "abfragt" (scraped).

1. Dependency: io.micrometer:micrometer-registry-prometheus

2. Endpoint: Spring Boot exponiert einen /actuator/prometheus Endpoint im
Prometheus-Format.
Prometheus wird so konfiguriert, dass es diesen Endpoint regelmalig abfragt.
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Grafana

Eine Open-Source-Plattform flr Analysen und interaktive Dashboards.

e Verbindet sich mit Prometheus als Datenquelle.

e Visualisiert die Metriken in Dashboards (z.B. JVM-Metriken, Custom Metrics).

Ablauf:

1. Spring Boot App generiert Metriken tber Micrometer.
2. /actuator/prometheus liefert diese im Prometheus-Format.
3. Prometheus scraped (holt) die Daten regelmaliig von diesem Endpoint.

4. Grafana fragt Prometheus ab und visualisiert die Daten.
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Distributed Tracing & Observability
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Von Sleuth zu Micrometer Tracing

In Spring Boot 3 wurde Spring Cloud Sleuth durch Micrometer Tracing abgelost.

e Ziel: Einen Request Uber mehrere Microservices hinweg verfolgen.

e Trace ID: Eindeutige ID fur den gesamten Request-Flow.

e Span ID: ID fur einen einzelnen Arbeitsschritt (z.B. Service A ruft Service B).
Log Korrelation:

Die IDs werden automatisch in die Logs geschrieben (MDC), sodass man in
Kibana/Splunk nach einer TracelD filtern kann.
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Tracing Setup
Benotigte Dependencies (fur OpenTelemetry Standard):

<!-- Dlie Fassade -->
<dependency>
<groupId>io.micrometer</groupIld>
<artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>
<!-- Der Exporter (z.B. zu Zipkin oder Jaeger) -->
<dependency>
<groupId>io.opentelemetry</groupId>
<artifactId>opentelemetry-exporter-zipkin</artifactId>
</dependency>

Spring Boot konfiguriert den Tracer automatisch, sobald die Bridge im Classpath liegt.
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Context Propagation

Damit der Zusammenhang zwischen Requests Uber Services hinweg erkannt werden
kann, miussen Trace-IDs Ubertragen werden.

e W3C TraceContext: Der neue Standard (Default in Boot 3 / OTel).
o Header: traceparent

B3 Headers: Der alte Zipkin/Sleuth Standard.
o Header: X-B3-Traceld , X-B3-SpanId

Wichtig: Wenn alte Services (Sleuth) mit neuen (Boot 3) zusammenarbeiten, muss
man oft das Format anpassen:

management.tracing.propagation.type=b3
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HTTP Propagation

Spring Boot instrumentiert automatisch:

e RestTemplate / TestRestTemplate
e WebClient
e RestClient (neu)

Voraussetzung: Man darf new RestTemplate() hicht selbst aufrufen, sondern muss
den Builder nutzen!

@Bean
public RestTemplate restTemplate(RestTemplateBuilder builder) {

// Der Builder fugt Interceptors hinzu, die den 'traceparent' Header setzen
return builder.build();
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Propagation liber Messaging (JMS | Kafka)

Der Trace-Kontext kann ahnlich wie bel HTTP auch mit den Headern einer Nachricht im
Messaging propagiert werden. Das folgende Beispiel zeigt, wie das bei JIMS
funktioniert.
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Producer (JMS)

@Autowired JmsTemplate jmsTemplate; // Automatisch instrumentiert

public void send() {
// Schreibt 'traceparent' in die JMS Properties
jmsTemplate.convertAndSend("queue.orders", new OrderCmd());

Consumer

@IJmsListener(destination = "queue.orders")

public void onMessage(OrderCmd cmd) {
// Liest 'traceparent', setzt den Context fort
// und erzeugt einen neuen Child-Span
log.info("Processing order"); // Traceld ist im Log!
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Programmatisches Tracing (Observation API)
Die Observation API (seit Boot 3) vereinheitlicht Metrics und Tracing.

@Autowired ObservationRegistry registry;

public void dowork() {
Observation.createNotStarted("my.custom.operation", registry)
.lowCardinalityKeyVvalue("type", "batch")
.observe(() -> {
// Code hier wird gemessen (Timer)
// UND getraced (Span)
heavyCalculation();

1)
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@Observed Annotation

Die deklarative Alternative zur programmatischen Observation API.

@Service
public class OrderService {

@Observed(
name = "order.processing",
contextualName = "process-order",

lowCardinalityKeyValues = {"orderType", "standard"}
)

public Order processOrder(Order order) {
// Automatisch: Timer-Metrik + Trace-Span
return doProcessing(order);

Voraussetzung: @EnableAspectJAutoProxy und ObservedAspect Bean.
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ObservedAspect konfigurieren

@Configuration
public class ObservabilityConfig {

@Bean

public ObservedAspect observedAspect(ObservationRegistry registry) {
return new ObservedAspect(registry);

¥

Alternativ. spring-boot-starter-aop + Auto-Configuration in Boot 3.2+.
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@Observed vs. Programmatisch

Aspekt @Observed Observation API
Boilerplate Minimal Mehr Code
Flexibilitat Standard-Werte Volle Kontrolle
Dynamische Tags Nein Ja
Error Handling Automatisch Manuell moglich

Empfehlung: @observed fur Standard-Falle, API fir komplexe Szenarien.
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Exemplars
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Was sind Exemplars?

Exemplars verbinden Metriken mit Traces.

e Problem: Hohe Latenz in Metrik sichtbar, aber welcher Request war es?

e LOsung: Exemplar speichert traceld als Referenz zur Metrik.

http_request_duration_seconds{...} 0.5 # {traceld="abc123"}
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Exemplars aktivieren

management:
metrics:
distribution:
percentiles-histogram:
http.server.requests: true
prometheus:
metrics:
export:
enabled: true
tracing:
sampling:
probability: 1.0 # 100% Sampling fur Demo

Dependency: io.micrometer:micrometer-tracing-bridge-otel
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Exemplars in Prometheus/Grafana

In Grafana kbnnen Exemplars als Punkte auf Histogrammen angezeigt werden.

1. Prometheus scrapet Metriken mit Exemplars
2. Grafana zeigt Histogramm + Exemplar-Punkte

3. Klick auf Exemplar — Link zu Trace in Jaeger/Zipkin/Tempo

Ablauf:

Metrik (hohe Latenz) - Exemplar (traceld) - Trace - Root Cause
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Exemplar-Konfiguration (Detail)
@Configuration
public class ExemplarConfig {
@Bean
public DefaultExemplarSampler exemplarSampler (SpanContextSupplier supplier) {

// Nur bei aktiven Traces Exemplars erzeugen
return new DefaultExemplarSampler(supplier);

Spring Boot 3.2+ konfiguriert dies automatisch, wenn Tracing aktiv ist.
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