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In diesem Modul

Security-Architektur: Filter Chain, Kernkomponenten

Web Security DSL: Pfadregeln, CSRF, Form/Login/Bearer Basics
Method Security: @PreAuthorize & SpEL

CORS-Konfiguration fur APIs

OAuUth2/JWT: Resource Server, Claims — Authorities, Client-Login

CSRF bei Single Page Applications
Security Testing (@WithMockUser, @WithUserDetalls)
Mutual TLS (mTLS)
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Die Security Filter Chain

e Spring Security ist ein Filter-basierter Ansatz, der sich in die Servlet Filter Chain
einklinkt.

e Jede HTTP-Anfrage durchlauft eine Kette von Security Filtern (z.B.

UsernamePasswordAuthenticationFilter , BearerTokenAuthenticationFilter ).

e Die SecurityFiltercChain ist der zentrale Einstiegspunkt zur Konfiguration.
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Kernkomponenten

1. SecurityContextHolder : Halt das SecurityContext , welches wiederum das
Authentication -Objekt enthalt.
o Thread-local, d.h., der Kontext ist flr den aktuellen Request-Thread verfligbar.

2. Authentication : Reprasentiert den aktuell eingeloggten Benutzer.
o Enthalt principal (User-Details), credentials (Passwort), authorities
(Rollen/Berechtigungen).

3. AuthenticationManager : Schnittstelle zur Authentifizierung eines Authentication -Objekts.

4. AuthenticationProvider : Implementierung des AuthenticationManager , der die eigentliche
Logik zur Uberprifung der Anmeldedaten enthélt (z.B. baoAuthenticationProvider fir
Datenbank-User).

5. UserDetailsService : Ladt user-spezifische Daten (Username, Passwort, Rollen) zur
Authentifizierung.
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Web Security Konfiguration
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Die SecurityFilterChain-DSL

Die Hauptkonfiguration erfolgt Uber die HttpSecurity -Objekt im
SecurityFiltercChain -Bean.
Auf der folgenden Seite schauen wir uns die Konfiguration im Code an.
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@Configuration

@EnablewWebSecurity // Aktiviert Spring Security

@EnableMethodSecurity // Aktiviert Method Security (seit Spring Boot 3)
public class WebSecurityConfig {

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(auth -> auth
// Offentliche Endpoints
.requestMatchers("/public/**", "/error").permitAll()
// Admin-Endpoints erfordern spezifische Rolle
.requestMatchers("/api/admin/**").hasRole("ADMIN")
// Alle anderen Anfragen erfordern Authentifizierung
.anyRequest().authenticated()

.httpBasic(withDefaults()) // HTTP Basic Auth (optional)
.formLogin(withDefaults()); // Form-basierte Authentifizierung (optional)

// ... weitere Konfigurationen (z.B. OAuth2, Exception Handling)

return http.build();
}

// Fur In-Memory User (nur fir Entwicklung/Tests)
@Bean
public UserDetailsService userDetailsService() {
UserDetails user = User.withDefaultPasswordEncoder ()
.username("user")
.password("password")
.roles("USER")
.build();
UserDetails admin = User.withDefaultPasswordEncoder ()
.username("admin")
.password("admin")
.roles("ADMIN", "USER")
.build();
return new InMemoryUserDetailsManager (user, admin);
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Method Security
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Method Security (@EnableMethodSecurity)

Zusatzlich zur URL-basierten Autorisierung kann man Zugriffsregeln direkt an
Methoden oder Klassen definieren.

Aktivierung

Seit Spring Boot 3. @EnableMethodSecurity (ersetzt
@EnableGlobalMethodSecurity ).
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Annotations (l)

e @PreAuthorize("hasRole('ADMIN')") : Pruft die Berechtigung vor der Ausfuhrung
der Methode.
o Sehr flexibel dank Spring Expression Language (SpEL).

o principal , authentication , hasRole('ROLE_NAME') ,
hasAuthority('SCOPE_NAME') , hasPermission(...) .

o #paramName : Zugriff auf Methodenparameter.
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Annotations (ll)

e @PostAuthorize("returnObject.owner == authentication.name") : Prift die
Berechtigung nach der Ausfihrung der Methode (z.B. auf das zuruckgegebene
Objekt).

o Vorsicht: Methode wird immer ausgefuhrt, auch wenn die Autorisierung
fehlschlagt.

e @PreFilter("filterObject.owner == authentication.name") : Filtert
Collections vor der Methoden-Ausfuhrung.

e @PostFilter("filteroObject.active == true") : Filtert Collections nach der
Methoden-Ausfuhrung.
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Beispiele fur @PreAuthorize

@Service
@EnableMethodSecurity
public class DocumentService {

// Nur Admins dirfen Dokumente 1ldschen

@PreAuthorize("hasRole('ADMIN')")

public void deleteDocument(Long documentId) {
// ... Logik

}

// Nur der Besitzer oder ein Admin darf das Dokument bearbeiten
@PreAuthorize("hasRole('ADMIN') or @documentRepository.findById(#documentId).get().owner == authentication.name")
public Document updateDocument(Long documentId, Document document) {

// ... Logik

return document;

}
// Nur wenn der Benutzer im Array der erlaubten IDs ist
@PreAuthorize("#user.id == authentication.principal.id")
public User saveUser(User user) {

/] ..

return user;
}
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CORS (Cross-Origin Resource Sharing)
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CORS

Webbrowser verhindern standardmaliig, dass JavaScript-Code, der von example.com
geladen wird, Anfragen an api.anothersite.com sendet (Same-Origin Policy).
CORS ist ein Mechanismus, um diese Regel kontrolliert zu lockern.
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Konfiguration in Spring Boot

1. Globales CORS:
Fur alle Controller (oder bestimmte Pfade).

@Configuration
public class CorsConfig {
@Bean
public WebMvcConfigurer corsConfigurer() {
return new WebMvcConfigurer() {
@Override
public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/api/**") // Pfade, die CORS erlauben
.allowedOrigins("http://localhost:3000", "http://myfrontend.com") // Erlaubte Domains
.allowedMethods("GET", "POST", "PUT", "DELETE", "OPTIONS")
.allowedHeaders("*") // Erlaubte Header
.allowCredentials(true) // Cookies/Auth Header erlauben
.maxAge(3600); // Wie lange Preflight-Response cachen

1
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2. Controller-basierte CORS:
Mit der @crossOrigin -Annotation direkt am Controller oder an Methoden.

@RestController
@RequestMapping("/products")

@CrossOrigin(origins = "http://localhost:3000", methods = {RequestMethod.GET, RequestMethod.POST})
public class ProductController {

@GetMapping // Erbt @CrossOrigin von der Klasse

public List<Product> getAllProducts() { /* ... */ }

@PostMapping("/new")

@CrossOrigin(origins = "http://anotherexample.com") // Uberschreibt fir diese Methode
public Product createProduct(@RequestBody Product product) { /* ... */ }

@Crossorigin ist gut fur feingranulare Kontrolle, die globale Konfiguration ftr breitere
Regeln.
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OAuth
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OAuth2 & JWT Uberblick

Eine OAuth-Architektur besteht stark vereinfacht aus folgenden Komponenten:

e Authorization Server (IdP): Verwaltet User & Logins (z.B. Keycloak, AuthO,
Google) und stellt Tokens aus.

e Resource Server (Spring Boot): Unsere API, die Tokens validiert und
Ressourcen schutzt.

e Client: Frontend oder Mobile App, die das Token beim Resource Server nutzt.
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JSON Web Tokens

e Ein JWT (JSON Web Token) ist ein kompakter, signierter Token, der
Informationen zwischen zwel Parteien sicher transportiert, typischerweise

zwischen Client und Server.

e Er besteht aus Header, Payload und Signature und kann so serverseitig ohne
Session-Daten validiert werden.

e JWTs werden haufig fur Auth verwendet, weil sie sich leicht Gbermitteln lassen (z.

B. als HTTP-Header) und der Server nur die Signatur prifen muss, um dem
Token zu vertrauen.
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JWT Struktur

Ein Token besteht aus 3 Base64Url-kodierten Tellen:

1. Header: Algorithmus (z.B. HS256, RS256).

2. Payload (Claims): Daten (User ID, Expiration, Roles).

3. Signature: Uberprifung der Integritét.

Header Payload (Claims) Signature
alg, typ sub, exp, roles HMAC/RSASSA
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JWT Validierung

Es ist wichtig, die versendeten JWTs auf Gultigkeit zu prufen, weil sie von Angreifern
gefalscht werden konnten.

1. Signaturpriifung: Ist das Token unverféalscht? (6ffentlicher Schllssel des
Authorization Servers)

2. Ablaufzeit ( exp ): Ist das Token noch gultig?

3. Issuer ( iss ): Stammt das Token vom erwarteten Authorization Server?

4. Audience ( aud ): Ist das Token flr diesen Resource Server bestimmt?
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Was ist ein Resource Server?

Unsere Spring Boot Anwendung, die geschitzte Ressourcen (APIs) anbietet, ist selbst
ein Resource Server.

o Akzeptiert JWTs im Header Authorization: Bearer <token> .

e Validiert das JWT (Signatur, Ablaufzeit, Issuer).

o Extrahiert Benutzerinformationen und Berechtigungen (Scopes/Rollen).

e Nutzt diese Informationen fur die Autorisierung.
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Resource Server: Konfiguration

Damit Spring-Anwendungen als Resource Server fungieren, benétigen wir das
entsprechende Modul.

Dependency: spring-boot-starter-oauth2-resource-server
application.yml :

spring:
security:
oauth2:
resourceserver:
jwt:
# URI des Authorization Servers, von dem das Token ausgestellt wurde
issuer-uri: https://your-auth-server.com/realms/your-realm
# Alternativ: direkter Link zum JWK Set Endpoint
# jwk-set-uri: https://your-auth-server.com/realms/your-realm/protocol/openid-connect/certs
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Resource Server: SecurityFilterChain

@Configuration
@EnableWebSecurity
public class SecurityConfig {

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(auth -> auth
.requestMatchers("/public/**").permitAll()
.requestMatchers("/api/admin/**").hasAuthority("SCOPE_admin")
.anyRequest().authenticated()

)

.0oauth2ResourceServer(oauth2 -> oauth2.jwt(Customizer.withDefaults()));

return http.build();

Alexander Erben

25



Spring Boot Advanced

Zugriff auf JWT-Detalls

Im Controller kann man das Jwt -Objekt oder das Authentication -Objekt direkt
Injizieren.

@RestController
@RequestMapping("/user")
public class UserResource {

@GetMapping("/me")

public Map<String, Object> getPrincipalInfo(@AuthenticationPrincipal Jwt jwt) {
return jwt.getClaims(); // Alle Claims des JWT
b

@GetMapping("/roles")

public Collection<? extends GrantedAuthority> getAuthorities(Authentication authentication) {
return authentication.getAuthorities(); // Extrahierte Scopes/Rollen
b
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Custom JWT Converter (Claims zu Authorities)

Standardmaldig mappt Spring die scope - oder scp -Claims zu Authorities. Wenn
Rollen in anderen Claims ( realm_access.roles ) liegen, braucht man einen Custom
Converter.
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@Bean
public JwtAuthenticationConverter jwtAuthenticationConverter() {

JwtGrantedAuthoritiesConverter grantedAuthoritiesConverter = new JwtGrantedAuthoritiesConverter();

// Prefix flUr Scopes entfernen, falls vorhanden (z.B. "SCOPE_" entfernen)
grantedAuthoritiesConverter.setAuthorityPrefix("");

JwtAuthenticationConverter jwtConverter = new JwtAuthenticationConverter();
jwtConverter.setJwtGrantedAuthoritiesConverter(jwt -> {
Collection<GrantedAuthority> authorities = grantedAuthoritiesConverter.convert(jwt);

// Extrahiere Rollen aus 'realm_access.roles' (Keycloak-spezifisch)

if (jwt.hasClaim("realm_access")) {
Map<String, Object> realmAccess = jwt.getClaimAsMap('"realm_access");
if (realmAccess.containsKey("roles")) {
List<String> roles = (List<String>) realmAccess.get('"roles");
authorities.addAll(roles.stream()
.map(roleName -> new SimpleGrantedAuthority("ROLE_" + roleName.toUpperCase()))

.collect(Collectors.toList()));
}
}
return authorities;

1);

return jwtConverter;
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OAuth2 Client (Optional)

Wenn unsere Spring Boot App selbst ein Client ist, der sich bei einem OAuth2-Provider
anmeldet, um auf geschutzte Ressourcen anderer Services zuzugreifen (z.B. User
Login mit Google).

Alexander Erben
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Dependency: spring-boot-starter-oauth2-client

application.yml :

spring:
security:
oauth2:
client:
registration:
google: # Registrierung flur Google
client-id: your-google-client-id
client-secret: your-google-client-secret
scope: openid, profile,email
provider:
google:
issuer-uri: https://accounts.google.com
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OAuth2 Client: Nutzung

@RestController
public class OAuth2ClientController {

@GetMapping("/loginSuccess")

public String getLoginInfo(@AuthenticationPrincipal OAuth2User oauth2User) {
return "Logged in as: " + oauth2User.getName();
}

Alexander Erben
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CSRF bel Single Page Applications
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CSRF Grundlagen

Cross-Site Request Forgery: Ein Angreifer bringt einen eingeloggten User dazu,
ungewollt Aktionen auszufthren.

e Browser sendet Cookies automatisch mit
o Angreifer-Seite kann POST-Request an legitime APl senden

e Server kann nicht unterscheiden: User oder Angreifer?

Alexander Erben
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CSRF-Schutz: Klassisch vs. SPA

Szenario CSRF-Schutz

Server-Side Rendering (Thymeleaf) CSRF-Token im Form

SPA + Session Cookie CSRF-Token erforderlich
SPA + JWT im Header CSRF nicht nétig
SPA + JWT im Cookie CSRF erforderlich!

Regel: Wenn Auth-Daten automatisch gesendet werden (Cookies), braucht man
CSRF-Schutz.
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CSRF deaktivieren (nur bei stateless Auth!)

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http
.csrf(csrf -> csrf.disable()) // Nur wenn JWT im Authorization Header!
.0oauth2ResourceServer (oauth2 -> oauth2.jwt(Customizer.withDefaults()))
cbuild();

Achtung: Nur deaktivieren, wenn:

e Authentifizierung Uber Authorization: Bearer Header

e Kelne Session-Cookies verwendet werden
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CSRF fur SPAs mit Cookie-Auth

Wenn Session-Cookies verwendet werden, muss das CSRF-Token zur SPA lbertragen
werden.

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http
.csrf(csrf -> csrf
.csrfTokenRepository(CookieCsrfTokenRepository.withHttpOnlyFalse())
.csrfTokenRequestHandler (new SpaCsrfTokenRequestHandler())

)
build();

Das Token wird als Cookie XSRF-TOKEN gesendet. Die SPA liest es und sendet es als
Header X-XSRF-TOKEN zurlck.
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SpaCsrfTokenRequestHandler (Spring Security 6)

public class SpaCsrfTokenRequestHandler extends CsrfTokenRequestAttributeHandler {
private final CsrfTokenRequestHandler delegate = new XorCsrfTokenRequestAttributeHandler();

@Override
public void handle(HttpServletRequest request, HttpServletResponse response,
Supplier<CsrfToken> csrfToken) {
this.delegate.handle(request, response, csrfToken);

}

@Override
public String resolveCsrfTokenValue(HttpServletRequest request, CsrfToken csrfToken) {
// Header hat Prioritat (SPA), dann Form-Parameter (klassisch)
String header = request.getHeader(csrfToken.getHeaderName());
return (header != null) ? super.resolveCsrfTokenValue(request, csrfToken)
this.delegate.resolveCsrfTokenValue(request, csrfToken);
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Security Testing

Alexander Erben

38



Spring Boot Advanced

@WithMockUser

Simuliert einen authentifizierten User in Tests — ohne echte Authentifizierung.

@WebMvcTest (UserController.class)
class UserControllerSecurityTest {

@Autowired
private MockMvc mockMvc;

@Test
@withMockUser (username = "alice", roles = {"USER"})
void shouldAllowAccessForAuthenticatedUser() throws Exception {
mockMvc.perform(get("/api/profile"))
.andeExpect(status().1s0k());

}

@Test
void shouldDenyAccessForAnonymous() throws Exception {
mockMvc.perform(get("/api/profile"))

Alexander Erben .andExpect(status().isUnauthorized());
,
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@WithMockUser mit Custom Authorities

@Test
@withMockUser (
username = "admin",
authorities = {"SCOPE_read", "SCOPE_write'", "ROLE_ADMIN"}

)

vold shouldAllowAdminOperations() throws Exception {
mockMvc.perform(delete("/api/users/1"))
.andeExpect(status().1isNoContent());

Hinweis: roles = {"ADMIN"} flgt automatisch ROLE_ Prefix hinzu.
authorities erlaubt beliebige Authority-Strings.
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@WithUserDetalls

Ladt einen echten User aus dem userDetailsService — fur realistischere Tests.

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerIntegrationTest {

@Test
@withUserDetails(value = "alice@example.com", userDetailsServiceBeanName = "myUserDetailsService'")
void shouldLoadRealUserFromDatabase() throws Exception {
mockMvc.perform(get("/api/profile"))
.andExpect(status().1is0k())
.andExpect(jsonPath("$.email").value("alice@example.com"));
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Custom Security Context fur JWT

Fur OAuth2/JWT Tests kann man einen eigenen SecurityContext erstellen.

@Test
volid shouldAcceptValidJdwt() throws Exception {
mockMvc.perform(get("/api/data")
with(jwt()
.Jwt(builder -> builder

.Subject("user-123")

.claim("scope", "read write")

.claim("realm_access", Map.of("roles", List.of("user'")))

)
.authorities(new SimpleGrantedAuthority("SCOPE_read"))

))
.andexpect(status().is0k());

Dependency: spring-security-test
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Mutual TLS (mTLS)
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Was ist mTLS?

Bei normalem TLS authentifiziert sich nur der Server gegenuber dem Client.
Bei mTLS authentifizieren sich beide Seiten mit Zertifikaten.

e Use Case: Service-to-Service Kommunikation in Zero-Trust-Umgebungen

e Vorteil: Kein Passwort/Token notig, Zertifikat = Identitat
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MTLS Konfiguration (Server)

server:
port: 8443
ssl:
enabled: true
key-store: classpath:server-keystore.pl2
key-store-password: changeit
key-store-type: PKCS12

# Client-Zertifikat erforderlich
client-auth: need # oder "want" fur optional

trust-store: classpath:truststore.pl2
trust-store-password: changeit
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Client-Zertifikat im Controller auslesen

@RestController
public class SecureController {

@GetMapping("/whoami")
public Map<String, String> whoAmI(HttpServletRequest request) {

¥
¥
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X509Certificate[] certs = (X509Certificate[])
request.getAttribute("jakarta.servlet.request.X509Certificate");

if (certs != null && certs.length > 0) {
X500Principal principal = certs[0].getSubjectX500Principal();
return Map.of(
"cn", extractCN(principal.getName()),
"issuer'", certs[0].getIssuerX500Principal().getName()

)
}

return Map.of("error", '"No client certificate");
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MTLS mit RestClient (Client-Seite)

@Bean
public RestClient mtlsRestClient() throws Exception {
KeyStore keyStore = KeyStore.getInstance('"PKCS12");
keyStore.load(new FileInputStream("client-keystore.p12"), "changeit".toCharArray());

KeyStore trustStore = KeyStore.getInstance("PKCS12");
trustStore.load(new FileInputStream("truststore.pl12"), "changeit".toCharArray());

SSLContext sslContext = SSLContextBuilder.create()
.loadKeyMaterial(keyStore, "changeit".toCharArray())
.loadTrustMaterial(trustStore, null)
build();

HttpClient httpClient = HttpClient.create()
.secure(spec -> spec.sslContext(sslContext));

return RestClient.builder ()
.requestFactory(new ReactorClientHttpRequestFactory(httpClient))
.baseUrl("https://secure-service:8443")
cbuild();

}
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MTLS in Kubernetes

In der Praxis wird mTLS oft vom Service Mesh (Istio, Linkerd) Gbernommen:

e Automatic mTLS: Mesh injiziert Sidecar-Proxies
o Zertifikats-Rotation: Automatisch durch Mesh

o Application-Code: Bleibt unverandert (plain HTTP intern)

# Istio PeerAuthentication
apiVersion: security.istio.io/vlbetal
kind: PeerAuthentication
metadata:

name: default
spec:

mtls:

mode: STRICT # Alle Services mussen mTLS verwenden
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