
Architektur von Spring Security

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Security-Architektur: Filter Chain, Kernkomponenten

Web Security DSL: Pfadregeln, CSRF, Form/Login/Bearer Basics

Method Security: @PreAuthorize & SpEL

CORS-Konfiguration für APIs

OAuth2/JWT: Resource Server, Claims → Authorities, Client-Login

CSRF bei Single Page Applications

Security Testing (@WithMockUser, @WithUserDetails)

Mutual TLS (mTLS)

Spring Boot Advanced

Alexander Erben 2

Die Security Filter Chain

Spring Security ist ein Filter-basierter Ansatz, der sich in die Servlet Filter Chain

einklinkt.

Jede HTTP-Anfrage durchläuft eine Kette von Security Filtern (z.B.
UsernamePasswordAuthenticationFilter , BearerTokenAuthenticationFilter).

Die SecurityFilterChain ist der zentrale Einstiegspunkt zur Konfiguration.

Spring Boot Advanced

Alexander Erben 3

Kernkomponenten

1. SecurityContextHolder : Hält das SecurityContext , welches wiederum das

Authentication -Objekt enthält.

Thread-local, d.h., der Kontext ist für den aktuellen Request-Thread verfügbar.

2. Authentication : Repräsentiert den aktuell eingeloggten Benutzer.

Enthält principal (User-Details), credentials (Passwort), authorities
(Rollen/Berechtigungen).

3. AuthenticationManager : Schnittstelle zur Authentifizierung eines Authentication -Objekts.

4. AuthenticationProvider : Implementierung des AuthenticationManager , der die eigentliche

Logik zur Überprüfung der Anmeldedaten enthält (z.B. DaoAuthenticationProvider für

Datenbank-User).

5. UserDetailsService : Lädt user-spezifische Daten (Username, Passwort, Rollen) zur

Authentifizierung.

Spring Boot Advanced

Alexander Erben 4

Web Security Konfiguration

Spring Boot Advanced

Alexander Erben 5

Die SecurityFilterChain-DSL

Die Hauptkonfiguration erfolgt über die HttpSecurity -Objekt im
SecurityFilterChain -Bean.

Auf der folgenden Seite schauen wir uns die Konfiguration im Code an.

Spring Boot Advanced

Alexander Erben 6

@Configuration
@EnableWebSecurity // Aktiviert Spring Security
@EnableMethodSecurity // Aktiviert Method Security (seit Spring Boot 3)
public class WebSecurityConfig {

 @Bean
 public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 http
 .authorizeHttpRequests(auth -> auth
 // Öffentliche Endpoints
 .requestMatchers("/public/**", "/error").permitAll()
 // Admin-Endpoints erfordern spezifische Rolle
 .requestMatchers("/api/admin/**").hasRole("ADMIN")
 // Alle anderen Anfragen erfordern Authentifizierung
 .anyRequest().authenticated()
)
 .httpBasic(withDefaults()) // HTTP Basic Auth (optional)
 .formLogin(withDefaults()); // Form-basierte Authentifizierung (optional)

 // ... weitere Konfigurationen (z.B. OAuth2, Exception Handling)

 return http.build();
 }

 // Für In-Memory User (nur für Entwicklung/Tests)
 @Bean
 public UserDetailsService userDetailsService() {
 UserDetails user = User.withDefaultPasswordEncoder()
 .username("user")
 .password("password")
 .roles("USER")
 .build();
 UserDetails admin = User.withDefaultPasswordEncoder()
 .username("admin")
 .password("admin")
 .roles("ADMIN", "USER")
 .build();
 return new InMemoryUserDetailsManager(user, admin);
 }
}

Spring Boot Advanced

Alexander Erben 7

Method Security

Spring Boot Advanced

Alexander Erben 8

Method Security (@EnableMethodSecurity)

Zusätzlich zur URL-basierten Autorisierung kann man Zugriffsregeln direkt an

Methoden oder Klassen definieren.

Aktivierung

Seit Spring Boot 3: @EnableMethodSecurity (ersetzt
@EnableGlobalMethodSecurity).

Spring Boot Advanced

Alexander Erben 9

Annotations (I)

@PreAuthorize("hasRole('ADMIN')") : Prüft die Berechtigung vor der Ausführung

der Methode.
Sehr flexibel dank Spring Expression Language (SpEL).

principal , authentication , hasRole('ROLE_NAME') ,
hasAuthority('SCOPE_NAME') , hasPermission(...) .

#paramName : Zugriff auf Methodenparameter.

Spring Boot Advanced

Alexander Erben 10

Annotations (II)

@PostAuthorize("returnObject.owner == authentication.name") : Prüft die

Berechtigung nach der Ausführung der Methode (z.B. auf das zurückgegebene
Objekt).

Vorsicht: Methode wird immer ausgeführt, auch wenn die Autorisierung
fehlschlägt.

@PreFilter("filterObject.owner == authentication.name") : Filtert
Collections vor der Methoden-Ausführung.

@PostFilter("filterObject.active == true") : Filtert Collections nach der

Methoden-Ausführung.

Spring Boot Advanced

Alexander Erben 11

Beispiele für @PreAuthorize

@Service
@EnableMethodSecurity
public class DocumentService {

 // Nur Admins dürfen Dokumente löschen
 @PreAuthorize("hasRole('ADMIN')")
 public void deleteDocument(Long documentId) {
 // ... Logik
 }

 // Nur der Besitzer oder ein Admin darf das Dokument bearbeiten
 @PreAuthorize("hasRole('ADMIN') or @documentRepository.findById(#documentId).get().owner == authentication.name")
 public Document updateDocument(Long documentId, Document document) {
 // ... Logik
 return document;
 }

 // Nur wenn der Benutzer im Array der erlaubten IDs ist
 @PreAuthorize("#user.id == authentication.principal.id")
 public User saveUser(User user) {
 // ...
 return user;
 }
}

Spring Boot Advanced

Alexander Erben 12

CORS (Cross-Origin Resource Sharing)

Spring Boot Advanced

Alexander Erben 13

CORS

Webbrowser verhindern standardmäßig, dass JavaScript-Code, der von example.com
geladen wird, Anfragen an api.anothersite.com sendet (Same-Origin Policy).

CORS ist ein Mechanismus, um diese Regel kontrolliert zu lockern.

Spring Boot Advanced

Alexander Erben 14

Konfiguration in Spring Boot

1. Globales CORS:
Für alle Controller (oder bestimmte Pfade).

@Configuration
public class CorsConfig {
 @Bean
 public WebMvcConfigurer corsConfigurer() {
 return new WebMvcConfigurer() {
 @Override
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/api/**") // Pfade, die CORS erlauben
 .allowedOrigins("http://localhost:3000", "http://myfrontend.com") // Erlaubte Domains
 .allowedMethods("GET", "POST", "PUT", "DELETE", "OPTIONS")
 .allowedHeaders("*") // Erlaubte Header
 .allowCredentials(true) // Cookies/Auth Header erlauben
 .maxAge(3600); // Wie lange Preflight-Response cachen
 }
 };
 }
}

Spring Boot Advanced

Alexander Erben 15

2. Controller-basierte CORS:
Mit der @CrossOrigin -Annotation direkt am Controller oder an Methoden.

@RestController
@RequestMapping("/products")
@CrossOrigin(origins = "http://localhost:3000", methods = {RequestMethod.GET, RequestMethod.POST})
public class ProductController {

 @GetMapping // Erbt @CrossOrigin von der Klasse
 public List<Product> getAllProducts() { /* ... */ }

 @PostMapping("/new")
 @CrossOrigin(origins = "http://anotherexample.com") // Überschreibt für diese Methode
 public Product createProduct(@RequestBody Product product) { /* ... */ }
}

@CrossOrigin ist gut für feingranulare Kontrolle, die globale Konfiguration für breitere

Regeln.

Spring Boot Advanced

Alexander Erben 16

OAuth

Spring Boot Advanced

Alexander Erben 17

OAuth2 & JWT Überblick

Eine OAuth-Architektur besteht stark vereinfacht aus folgenden Komponenten:

Authorization Server (IdP): Verwaltet User & Logins (z.B. Keycloak, Auth0,
Google) und stellt Tokens aus.

Resource Server (Spring Boot): Unsere API, die Tokens validiert und

Ressourcen schützt.

Client: Frontend oder Mobile App, die das Token beim Resource Server nutzt.

Spring Boot Advanced

Alexander Erben 18

User

Client
(Browser / Mobile App)

Authorization Server (IdP)
Stellt Logins & Tokens bereit

Resource Server
(Spring Boot API)

Validiert JWT & schützt
Ressourcen

Login / Consent

1. Authorization Request

2. Auth Code / Access Token (JWT)

3. API Call mit Bearer Token
4. Signaturprüfung / JWKs

5. Antwort der geschützten Ressource

Spring Boot Advanced

Alexander Erben 19

JSON Web Tokens

Ein JWT (JSON Web Token) ist ein kompakter, signierter Token, der
Informationen zwischen zwei Parteien sicher transportiert, typischerweise

zwischen Client und Server.

Er besteht aus Header, Payload und Signature und kann so serverseitig ohne
Session-Daten validiert werden.

JWTs werden häufig für Auth verwendet, weil sie sich leicht übermitteln lassen (z.
B. als HTTP-Header) und der Server nur die Signatur prüfen muss, um dem

Token zu vertrauen.

Spring Boot Advanced

Alexander Erben 20

JWT Struktur

Ein Token besteht aus 3 Base64Url-kodierten Teilen:

1. Header: Algorithmus (z.B. HS256, RS256).

2. Payload (Claims): Daten (User ID, Expiration, Roles).

3. Signature: Überprüfung der Integrität.

Header
alg, typ .

Payload (Claims)
sub, exp, roles

Signature
HMAC/RSASSA.

Spring Boot Advanced

Alexander Erben 21

JWT Validierung

Es ist wichtig, die versendeten JWTs auf Gültigkeit zu prüfen, weil sie von Angreifern

gefälscht werden könnten.

1. Signaturprüfung: Ist das Token unverfälscht? (öffentlicher Schlüssel des

Authorization Servers)

2. Ablaufzeit (exp): Ist das Token noch gültig?

3. Issuer (iss): Stammt das Token vom erwarteten Authorization Server?

4. Audience (aud): Ist das Token für diesen Resource Server bestimmt?

Spring Boot Advanced

Alexander Erben 22

Was ist ein Resource Server?

Unsere Spring Boot Anwendung, die geschützte Ressourcen (APIs) anbietet, ist selbst
ein Resource Server.

Akzeptiert JWTs im Header Authorization: Bearer <token> .

Validiert das JWT (Signatur, Ablaufzeit, Issuer).

Extrahiert Benutzerinformationen und Berechtigungen (Scopes/Rollen).

Nutzt diese Informationen für die Autorisierung.

Spring Boot Advanced

Alexander Erben 23

Resource Server: Konfiguration

Damit Spring-Anwendungen als Resource Server fungieren, benötigen wir das
entsprechende Modul.

Dependency: spring-boot-starter-oauth2-resource-server

application.yml :

spring:
 security:
 oauth2:
 resourceserver:
 jwt:
 # URI des Authorization Servers, von dem das Token ausgestellt wurde
 issuer-uri: https://your-auth-server.com/realms/your-realm
 # Alternativ: direkter Link zum JWK Set Endpoint
 # jwk-set-uri: https://your-auth-server.com/realms/your-realm/protocol/openid-connect/certs

Spring Boot Advanced

Alexander Erben 24

Resource Server: SecurityFilterChain

@Configuration
@EnableWebSecurity
public class SecurityConfig {

 @Bean
 public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 http
 .authorizeHttpRequests(auth -> auth
 .requestMatchers("/public/**").permitAll()
 .requestMatchers("/api/admin/**").hasAuthority("SCOPE_admin")
 .anyRequest().authenticated()
)
 .oauth2ResourceServer(oauth2 -> oauth2.jwt(Customizer.withDefaults()));

 return http.build();
 }
}

Spring Boot Advanced

Alexander Erben 25

Zugriff auf JWT-Details

Im Controller kann man das Jwt -Objekt oder das Authentication -Objekt direkt

injizieren.

@RestController
@RequestMapping("/user")
public class UserResource {

 @GetMapping("/me")
 public Map<String, Object> getPrincipalInfo(@AuthenticationPrincipal Jwt jwt) {
 return jwt.getClaims(); // Alle Claims des JWT
 }

 @GetMapping("/roles")
 public Collection<? extends GrantedAuthority> getAuthorities(Authentication authentication) {
 return authentication.getAuthorities(); // Extrahierte Scopes/Rollen
 }
}

Spring Boot Advanced

Alexander Erben 26

Custom JWT Converter (Claims zu Authorities)

Standardmäßig mappt Spring die scope - oder scp -Claims zu Authorities. Wenn
Rollen in anderen Claims (realm_access.roles) liegen, braucht man einen Custom

Converter.

Spring Boot Advanced

Alexander Erben 27

@Bean
public JwtAuthenticationConverter jwtAuthenticationConverter() {
 JwtGrantedAuthoritiesConverter grantedAuthoritiesConverter = new JwtGrantedAuthoritiesConverter();
 // Prefix für Scopes entfernen, falls vorhanden (z.B. "SCOPE_" entfernen)
 grantedAuthoritiesConverter.setAuthorityPrefix("");

 JwtAuthenticationConverter jwtConverter = new JwtAuthenticationConverter();
 jwtConverter.setJwtGrantedAuthoritiesConverter(jwt -> {
 Collection<GrantedAuthority> authorities = grantedAuthoritiesConverter.convert(jwt);

 // Extrahiere Rollen aus 'realm_access.roles' (Keycloak-spezifisch)
 if (jwt.hasClaim("realm_access")) {
 Map<String, Object> realmAccess = jwt.getClaimAsMap("realm_access");
 if (realmAccess.containsKey("roles")) {
 List<String> roles = (List<String>) realmAccess.get("roles");
 authorities.addAll(roles.stream()
 .map(roleName -> new SimpleGrantedAuthority("ROLE_" + roleName.toUpperCase()))
 .collect(Collectors.toList()));
 }
 }
 return authorities;
 });
 return jwtConverter;
}

Spring Boot Advanced

Alexander Erben 28

OAuth2 Client (Optional)

Wenn unsere Spring Boot App selbst ein Client ist, der sich bei einem OAuth2-Provider
anmeldet, um auf geschützte Ressourcen anderer Services zuzugreifen (z.B. User

Login mit Google).

Spring Boot Advanced

Alexander Erben 29

Dependency: spring-boot-starter-oauth2-client

application.yml :

spring:
 security:
 oauth2:
 client:
 registration:
 google: # Registrierung für Google
 client-id: your-google-client-id
 client-secret: your-google-client-secret
 scope: openid,profile,email
 provider:
 google:
 issuer-uri: https://accounts.google.com

Spring Boot Advanced

Alexander Erben 30

OAuth2 Client: Nutzung

@RestController
public class OAuth2ClientController {

 @GetMapping("/loginSuccess")
 public String getLoginInfo(@AuthenticationPrincipal OAuth2User oauth2User) {
 return "Logged in as: " + oauth2User.getName();
 }
}

Spring Boot Advanced

Alexander Erben 31

CSRF bei Single Page Applications

Spring Boot Advanced

Alexander Erben 32

CSRF Grundlagen

Cross-Site Request Forgery: Ein Angreifer bringt einen eingeloggten User dazu,

ungewollt Aktionen auszuführen.

Browser sendet Cookies automatisch mit

Angreifer-Seite kann POST-Request an legitime API senden

Server kann nicht unterscheiden: User oder Angreifer?

Spring Boot Advanced

Alexander Erben 33

CSRF-Schutz: Klassisch vs. SPA

Szenario CSRF-Schutz

Server-Side Rendering (Thymeleaf) CSRF-Token im Form

SPA + Session Cookie CSRF-Token erforderlich

SPA + JWT im Header CSRF nicht nötig

SPA + JWT im Cookie CSRF erforderlich!

Regel: Wenn Auth-Daten automatisch gesendet werden (Cookies), braucht man

CSRF-Schutz.

Spring Boot Advanced

Alexander Erben 34

CSRF deaktivieren (nur bei stateless Auth!)

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .csrf(csrf -> csrf.disable()) // Nur wenn JWT im Authorization Header!
 .oauth2ResourceServer(oauth2 -> oauth2.jwt(Customizer.withDefaults()))
 .build();
}

Achtung: Nur deaktivieren, wenn:

Authentifizierung über Authorization: Bearer Header

Keine Session-Cookies verwendet werden

Spring Boot Advanced

Alexander Erben 35

CSRF für SPAs mit Cookie-Auth

Wenn Session-Cookies verwendet werden, muss das CSRF-Token zur SPA übertragen
werden.

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
 return http
 .csrf(csrf -> csrf
 .csrfTokenRepository(CookieCsrfTokenRepository.withHttpOnlyFalse())
 .csrfTokenRequestHandler(new SpaCsrfTokenRequestHandler())
)
 .build();
}

Das Token wird als Cookie XSRF-TOKEN gesendet. Die SPA liest es und sendet es als

Header X-XSRF-TOKEN zurück.

Spring Boot Advanced

Alexander Erben 36

SpaCsrfTokenRequestHandler (Spring Security 6)

public class SpaCsrfTokenRequestHandler extends CsrfTokenRequestAttributeHandler {

 private final CsrfTokenRequestHandler delegate = new XorCsrfTokenRequestAttributeHandler();

 @Override
 public void handle(HttpServletRequest request, HttpServletResponse response,
 Supplier<CsrfToken> csrfToken) {
 this.delegate.handle(request, response, csrfToken);
 }

 @Override
 public String resolveCsrfTokenValue(HttpServletRequest request, CsrfToken csrfToken) {
 // Header hat Priorität (SPA), dann Form-Parameter (klassisch)
 String header = request.getHeader(csrfToken.getHeaderName());
 return (header != null) ? super.resolveCsrfTokenValue(request, csrfToken)
 : this.delegate.resolveCsrfTokenValue(request, csrfToken);
 }
}

Spring Boot Advanced

Alexander Erben 37

Security Testing

Spring Boot Advanced

Alexander Erben 38

@WithMockUser

Simuliert einen authentifizierten User in Tests – ohne echte Authentifizierung.

@WebMvcTest(UserController.class)
class UserControllerSecurityTest {

 @Autowired
 private MockMvc mockMvc;

 @Test
 @WithMockUser(username = "alice", roles = {"USER"})
 void shouldAllowAccessForAuthenticatedUser() throws Exception {
 mockMvc.perform(get("/api/profile"))
 .andExpect(status().isOk());
 }

 @Test
 void shouldDenyAccessForAnonymous() throws Exception {
 mockMvc.perform(get("/api/profile"))
 .andExpect(status().isUnauthorized());

}

Spring Boot Advanced

Alexander Erben 39

@WithMockUser mit Custom Authorities

@Test
@WithMockUser(
 username = "admin",
 authorities = {"SCOPE_read", "SCOPE_write", "ROLE_ADMIN"}
)
void shouldAllowAdminOperations() throws Exception {
 mockMvc.perform(delete("/api/users/1"))
 .andExpect(status().isNoContent());
}

Hinweis: roles = {"ADMIN"} fügt automatisch ROLE_ Prefix hinzu.
authorities erlaubt beliebige Authority-Strings.

Spring Boot Advanced

Alexander Erben 40

@WithUserDetails

Lädt einen echten User aus dem UserDetailsService – für realistischere Tests.

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerIntegrationTest {

 @Test
 @WithUserDetails(value = "alice@example.com", userDetailsServiceBeanName = "myUserDetailsService")
 void shouldLoadRealUserFromDatabase() throws Exception {
 mockMvc.perform(get("/api/profile"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.email").value("alice@example.com"));
 }
}

Spring Boot Advanced

Alexander Erben 41

Custom Security Context für JWT

Für OAuth2/JWT Tests kann man einen eigenen SecurityContext erstellen.

@Test
void shouldAcceptValidJwt() throws Exception {
 mockMvc.perform(get("/api/data")
 .with(jwt()
 .jwt(builder -> builder
 .subject("user-123")
 .claim("scope", "read write")
 .claim("realm_access", Map.of("roles", List.of("user")))
)
 .authorities(new SimpleGrantedAuthority("SCOPE_read"))
))
 .andExpect(status().isOk());
}

Dependency: spring-security-test

Spring Boot Advanced

Alexander Erben 42

Mutual TLS (mTLS)

Spring Boot Advanced

Alexander Erben 43

Was ist mTLS?

Bei normalem TLS authentifiziert sich nur der Server gegenüber dem Client.
Bei mTLS authentifizieren sich beide Seiten mit Zertifikaten.

Use Case: Service-to-Service Kommunikation in Zero-Trust-Umgebungen

Vorteil: Kein Passwort/Token nötig, Zertifikat = Identität

Spring Boot Advanced

Alexander Erben 44

mTLS Konfiguration (Server)

server:
 port: 8443
 ssl:
 enabled: true
 key-store: classpath:server-keystore.p12
 key-store-password: changeit
 key-store-type: PKCS12

 # Client-Zertifikat erforderlich
 client-auth: need # oder "want" für optional

 trust-store: classpath:truststore.p12
 trust-store-password: changeit

Spring Boot Advanced

Alexander Erben 45

Client-Zertifikat im Controller auslesen

@RestController
public class SecureController {

 @GetMapping("/whoami")
 public Map<String, String> whoAmI(HttpServletRequest request) {
 X509Certificate[] certs = (X509Certificate[])
 request.getAttribute("jakarta.servlet.request.X509Certificate");

 if (certs != null && certs.length > 0) {
 X500Principal principal = certs[0].getSubjectX500Principal();
 return Map.of(
 "cn", extractCN(principal.getName()),
 "issuer", certs[0].getIssuerX500Principal().getName()
);
 }
 return Map.of("error", "No client certificate");
 }
}

Spring Boot Advanced

Alexander Erben 46

mTLS mit RestClient (Client-Seite)

@Bean
public RestClient mtlsRestClient() throws Exception {
 KeyStore keyStore = KeyStore.getInstance("PKCS12");
 keyStore.load(new FileInputStream("client-keystore.p12"), "changeit".toCharArray());

 KeyStore trustStore = KeyStore.getInstance("PKCS12");
 trustStore.load(new FileInputStream("truststore.p12"), "changeit".toCharArray());

 SSLContext sslContext = SSLContextBuilder.create()
 .loadKeyMaterial(keyStore, "changeit".toCharArray())
 .loadTrustMaterial(trustStore, null)
 .build();

 HttpClient httpClient = HttpClient.create()
 .secure(spec -> spec.sslContext(sslContext));

 return RestClient.builder()
 .requestFactory(new ReactorClientHttpRequestFactory(httpClient))
 .baseUrl("https://secure-service:8443")
 .build();
}

Spring Boot Advanced

Alexander Erben 47

mTLS in Kubernetes

In der Praxis wird mTLS oft vom Service Mesh (Istio, Linkerd) übernommen:

Automatic mTLS: Mesh injiziert Sidecar-Proxies

Zertifikats-Rotation: Automatisch durch Mesh

Application-Code: Bleibt unverändert (plain HTTP intern)

Istio PeerAuthentication
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
spec:
 mtls:
 mode: STRICT # Alle Services müssen mTLS verwenden

Spring Boot Advanced

Alexander Erben 48

