Spring Boot Advanced

Architektur von Spring Security

Alexander Erben

Spring Boot Advanced

In diesem Modul

Security-Architektur: Filter Chain, Kernkomponenten

Web Security DSL: Pfadregeln, CSRF, Form/Login/Bearer Basics
Method Security: @PreAuthorize & SpEL

CORS-Konfiguration fur APIs

OAuUth2/JWT: Resource Server, Claims — Authorities, Client-Login

CSRF bei Single Page Applications
Security Testing (@WithMockUser, @WithUserDetalls)
Mutual TLS (mTLS)

Alexander Erben

Spring Boot Advanced

Die Security Filter Chain

e Spring Security ist ein Filter-basierter Ansatz, der sich in die Servlet Filter Chain
einklinkt.

e Jede HTTP-Anfrage durchlauft eine Kette von Security Filtern (z.B.

UsernamePasswordAuthenticationFilter , BearerTokenAuthenticationFilter).

e Die SecurityFiltercChain ist der zentrale Einstiegspunkt zur Konfiguration.

Alexander Erben

Spring Boot Advanced

Kernkomponenten

1. SecurityContextHolder : Halt das SecurityContext , welches wiederum das
Authentication -Objekt enthalt.
o Thread-local, d.h., der Kontext ist flr den aktuellen Request-Thread verfligbar.

2. Authentication : Reprasentiert den aktuell eingeloggten Benutzer.
o Enthalt principal (User-Details), credentials (Passwort), authorities
(Rollen/Berechtigungen).

3. AuthenticationManager : Schnittstelle zur Authentifizierung eines Authentication -Objekts.

4. AuthenticationProvider : Implementierung des AuthenticationManager , der die eigentliche
Logik zur Uberprifung der Anmeldedaten enthélt (z.B. baoAuthenticationProvider fir
Datenbank-User).

5. UserDetailsService : Ladt user-spezifische Daten (Username, Passwort, Rollen) zur
Authentifizierung.

Alexander Erben

Spring Boot Advanced

Web Security Konfiguration

Alexander Erben

Spring Boot Advanced

Die SecurityFilterChain-DSL

Die Hauptkonfiguration erfolgt Uber die HttpSecurity -Objekt im
SecurityFiltercChain -Bean.
Auf der folgenden Seite schauen wir uns die Konfiguration im Code an.

Alexander Erben

Spring Boot Advanced

@Configuration

@EnablewWebSecurity // Aktiviert Spring Security

@EnableMethodSecurity // Aktiviert Method Security (seit Spring Boot 3)
public class WebSecurityConfig {

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(auth -> auth
// Offentliche Endpoints
.requestMatchers("/public/**", "/error").permitAll()
// Admin-Endpoints erfordern spezifische Rolle
.requestMatchers("/api/admin/**").hasRole("ADMIN")
// Alle anderen Anfragen erfordern Authentifizierung
.anyRequest().authenticated()

.httpBasic(withDefaults()) // HTTP Basic Auth (optional)
.formLogin(withDefaults()); // Form-basierte Authentifizierung (optional)

// ... weitere Konfigurationen (z.B. OAuth2, Exception Handling)

return http.build();
}

// Fur In-Memory User (nur fir Entwicklung/Tests)
@Bean
public UserDetailsService userDetailsService() {
UserDetails user = User.withDefaultPasswordEncoder ()
.username("user")
.password("password")
.roles("USER")
.build();
UserDetails admin = User.withDefaultPasswordEncoder ()
.username("admin")
.password("admin")
.roles("ADMIN", "USER")
.build();
return new InMemoryUserDetailsManager (user, admin);

Alexander Erben

Spring Boot Advanced

Method Security

Alexander Erben

Spring Boot Advanced

Method Security (@EnableMethodSecurity)

Zusatzlich zur URL-basierten Autorisierung kann man Zugriffsregeln direkt an
Methoden oder Klassen definieren.

Aktivierung

Seit Spring Boot 3. @EnableMethodSecurity (ersetzt
@EnableGlobalMethodSecurity).

Alexander Erben

Spring Boot Advanced

Annotations (l)

e @PreAuthorize("hasRole('ADMIN')") : Pruft die Berechtigung vor der Ausfuhrung
der Methode.
o Sehr flexibel dank Spring Expression Language (SpEL).

o principal , authentication , hasRole('ROLE_NAME') ,
hasAuthority('SCOPE_NAME') , hasPermission(...) .

o #paramName : Zugriff auf Methodenparameter.

Alexander Erben

10

Spring Boot Advanced

Annotations (ll)

e @PostAuthorize("returnObject.owner == authentication.name") : Prift die
Berechtigung nach der Ausfihrung der Methode (z.B. auf das zuruckgegebene
Objekt).

o Vorsicht: Methode wird immer ausgefuhrt, auch wenn die Autorisierung
fehlschlagt.

e @PreFilter("filterObject.owner == authentication.name") : Filtert
Collections vor der Methoden-Ausfuhrung.

e @PostFilter("filteroObject.active == true") : Filtert Collections nach der
Methoden-Ausfuhrung.

Alexander Erben 11

Spring Boot Advanced

Beispiele fur @PreAuthorize

@Service
@EnableMethodSecurity
public class DocumentService {

// Nur Admins dirfen Dokumente 1ldschen

@PreAuthorize("hasRole('ADMIN')")

public void deleteDocument(Long documentId) {
// ... Logik

}

// Nur der Besitzer oder ein Admin darf das Dokument bearbeiten
@PreAuthorize("hasRole('ADMIN') or @documentRepository.findById(#documentId).get().owner == authentication.name")
public Document updateDocument(Long documentId, Document document) {

// ... Logik

return document;

}
// Nur wenn der Benutzer im Array der erlaubten IDs ist
@PreAuthorize("#user.id == authentication.principal.id")
public User saveUser(User user) {

/] ..

return user;
}

Alexander Erben

12

Spring Boot Advanced

CORS (Cross-Origin Resource Sharing)

Alexander Erben

13

Spring Boot Advanced

CORS

Webbrowser verhindern standardmaliig, dass JavaScript-Code, der von example.com
geladen wird, Anfragen an api.anothersite.com sendet (Same-Origin Policy).
CORS ist ein Mechanismus, um diese Regel kontrolliert zu lockern.

Alexander Erben

14

Spring Boot Advanced

Konfiguration in Spring Boot

1. Globales CORS:
Fur alle Controller (oder bestimmte Pfade).

@Configuration
public class CorsConfig {
@Bean
public WebMvcConfigurer corsConfigurer() {
return new WebMvcConfigurer() {
@Override
public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/api/**") // Pfade, die CORS erlauben
.allowedOrigins("http://localhost:3000", "http://myfrontend.com") // Erlaubte Domains
.allowedMethods("GET", "POST", "PUT", "DELETE", "OPTIONS")
.allowedHeaders("*") // Erlaubte Header
.allowCredentials(true) // Cookies/Auth Header erlauben
.maxAge(3600); // Wie lange Preflight-Response cachen

1

Alexander Erben

15

Spring Boot Advanced

2. Controller-basierte CORS:
Mit der @crossOrigin -Annotation direkt am Controller oder an Methoden.

@RestController
@RequestMapping("/products")

@CrossOrigin(origins = "http://localhost:3000", methods = {RequestMethod.GET, RequestMethod.POST})
public class ProductController {

@GetMapping // Erbt @CrossOrigin von der Klasse

public List<Product> getAllProducts() { /* ... */ }

@PostMapping("/new")

@CrossOrigin(origins = "http://anotherexample.com") // Uberschreibt fir diese Methode
public Product createProduct(@RequestBody Product product) { /* ... */ }

@Crossorigin ist gut fur feingranulare Kontrolle, die globale Konfiguration ftr breitere
Regeln.

Alexander Erben 16

Spring Boot Advanced

OAuth

Alexander Erben

17

Spring Boot Advanced

OAuth2 & JWT Uberblick

Eine OAuth-Architektur besteht stark vereinfacht aus folgenden Komponenten:

e Authorization Server (IdP): Verwaltet User & Logins (z.B. Keycloak, AuthO,
Google) und stellt Tokens aus.

e Resource Server (Spring Boot): Unsere API, die Tokens validiert und
Ressourcen schutzt.

e Client: Frontend oder Mobile App, die das Token beim Resource Server nutzt.

Alexander Erben 18

Spring Boot Advanced

User

Login / Consent

v

Client 1. Authorization Request—— Aythorization Server (IdP)

(Browser | Mobile App) Stellt Logins & Tokens bereit
2. Auth Code / Access Token (JWT)

A

5. Antwort der geschiitzten Ressource

3. API Call mit Bearer Token 4. Signaturprtifung / JWKs

4 ' N
Resource Server
(Spring Boot API) J
Validiert JIWT & schiitzt
Ressourcen
G J

Alexander Erben

19

Spring Boot Advanced

JSON Web Tokens

e Ein JWT (JSON Web Token) ist ein kompakter, signierter Token, der
Informationen zwischen zwel Parteien sicher transportiert, typischerweise

zwischen Client und Server.

e Er besteht aus Header, Payload und Signature und kann so serverseitig ohne
Session-Daten validiert werden.

e JWTs werden haufig fur Auth verwendet, weil sie sich leicht Gbermitteln lassen (z.

B. als HTTP-Header) und der Server nur die Signatur prifen muss, um dem
Token zu vertrauen.

Alexander Erben

20

Spring Boot Advanced

JWT Struktur

Ein Token besteht aus 3 Base64Url-kodierten Tellen:

1. Header: Algorithmus (z.B. HS256, RS256).

2. Payload (Claims): Daten (User ID, Expiration, Roles).

3. Signature: Uberprifung der Integritét.

Header Payload (Claims) Signature
alg, typ sub, exp, roles HMAC/RSASSA

Alexander Erben

21

Spring Boot Advanced

JWT Validierung

Es ist wichtig, die versendeten JWTs auf Gultigkeit zu prufen, weil sie von Angreifern
gefalscht werden konnten.

1. Signaturpriifung: Ist das Token unverféalscht? (6ffentlicher Schllssel des
Authorization Servers)

2. Ablaufzeit (exp): Ist das Token noch gultig?

3. Issuer (iss): Stammt das Token vom erwarteten Authorization Server?

4. Audience (aud): Ist das Token flr diesen Resource Server bestimmt?

Alexander Erben 22

Spring Boot Advanced

Was ist ein Resource Server?

Unsere Spring Boot Anwendung, die geschitzte Ressourcen (APIs) anbietet, ist selbst
ein Resource Server.

o Akzeptiert JWTs im Header Authorization: Bearer <token> .

e Validiert das JWT (Signatur, Ablaufzeit, Issuer).

o Extrahiert Benutzerinformationen und Berechtigungen (Scopes/Rollen).

e Nutzt diese Informationen fur die Autorisierung.

Alexander Erben

23

Spring Boot Advanced

Resource Server: Konfiguration

Damit Spring-Anwendungen als Resource Server fungieren, benétigen wir das
entsprechende Modul.

Dependency: spring-boot-starter-oauth2-resource-server
application.yml :

spring:
security:
oauth2:
resourceserver:
jwt:
URI des Authorization Servers, von dem das Token ausgestellt wurde
issuer-uri: https://your-auth-server.com/realms/your-realm
Alternativ: direkter Link zum JWK Set Endpoint
jwk-set-uri: https://your-auth-server.com/realms/your-realm/protocol/openid-connect/certs

Alexander Erben

24

Spring Boot Advanced

Resource Server: SecurityFilterChain

@Configuration
@EnableWebSecurity
public class SecurityConfig {

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(auth -> auth
.requestMatchers("/public/**").permitAll()
.requestMatchers("/api/admin/**").hasAuthority("SCOPE_admin")
.anyRequest().authenticated()

)

.0oauth2ResourceServer(oauth2 -> oauth2.jwt(Customizer.withDefaults()));

return http.build();

Alexander Erben

25

Spring Boot Advanced

Zugriff auf JWT-Detalls

Im Controller kann man das Jwt -Objekt oder das Authentication -Objekt direkt
Injizieren.

@RestController
@RequestMapping("/user")
public class UserResource {

@GetMapping("/me")

public Map<String, Object> getPrincipalInfo(@AuthenticationPrincipal Jwt jwt) {
return jwt.getClaims(); // Alle Claims des JWT
b

@GetMapping("/roles")

public Collection<? extends GrantedAuthority> getAuthorities(Authentication authentication) {
return authentication.getAuthorities(); // Extrahierte Scopes/Rollen
b

Alexander Erben

26

Spring Boot Advanced

Custom JWT Converter (Claims zu Authorities)

Standardmaldig mappt Spring die scope - oder scp -Claims zu Authorities. Wenn
Rollen in anderen Claims (realm_access.roles) liegen, braucht man einen Custom
Converter.

Alexander Erben

27

Spring Boot Advanced

@Bean
public JwtAuthenticationConverter jwtAuthenticationConverter() {

JwtGrantedAuthoritiesConverter grantedAuthoritiesConverter = new JwtGrantedAuthoritiesConverter();

// Prefix flUr Scopes entfernen, falls vorhanden (z.B. "SCOPE_" entfernen)
grantedAuthoritiesConverter.setAuthorityPrefix("");

JwtAuthenticationConverter jwtConverter = new JwtAuthenticationConverter();
jwtConverter.setJwtGrantedAuthoritiesConverter(jwt -> {
Collection<GrantedAuthority> authorities = grantedAuthoritiesConverter.convert(jwt);

// Extrahiere Rollen aus 'realm_access.roles' (Keycloak-spezifisch)

if (jwt.hasClaim("realm_access")) {
Map<String, Object> realmAccess = jwt.getClaimAsMap('"realm_access");
if (realmAccess.containsKey("roles")) {
List<String> roles = (List<String>) realmAccess.get('"roles");
authorities.addAll(roles.stream()
.map(roleName -> new SimpleGrantedAuthority("ROLE_" + roleName.toUpperCase()))

.collect(Collectors.toList()));
}
}
return authorities;

1);

return jwtConverter;

Alexander Erben

28

Spring Boot Advanced

OAuth2 Client (Optional)

Wenn unsere Spring Boot App selbst ein Client ist, der sich bei einem OAuth2-Provider
anmeldet, um auf geschutzte Ressourcen anderer Services zuzugreifen (z.B. User
Login mit Google).

Alexander Erben

29

Spring Boot Advanced

Dependency: spring-boot-starter-oauth2-client

application.yml :

spring:
security:
oauth2:
client:
registration:
google: # Registrierung flur Google
client-id: your-google-client-id
client-secret: your-google-client-secret
scope: openid, profile,email
provider:
google:
issuer-uri: https://accounts.google.com

Alexander Erben

30

Spring Boot Advanced

OAuth2 Client: Nutzung

@RestController
public class OAuth2ClientController {

@GetMapping("/loginSuccess")

public String getLoginInfo(@AuthenticationPrincipal OAuth2User oauth2User) {
return "Logged in as: " + oauth2User.getName();
}

Alexander Erben

31

Spring Boot Advanced

CSRF bel Single Page Applications

Alexander Erben

32

Spring Boot Advanced

CSRF Grundlagen

Cross-Site Request Forgery: Ein Angreifer bringt einen eingeloggten User dazu,
ungewollt Aktionen auszufthren.

e Browser sendet Cookies automatisch mit
o Angreifer-Seite kann POST-Request an legitime APl senden

e Server kann nicht unterscheiden: User oder Angreifer?

Alexander Erben

33

Spring Boot Advanced

CSRF-Schutz: Klassisch vs. SPA

Szenario CSRF-Schutz

Server-Side Rendering (Thymeleaf) CSRF-Token im Form

SPA + Session Cookie CSRF-Token erforderlich
SPA + JWT im Header CSRF nicht nétig
SPA + JWT im Cookie CSRF erforderlich!

Regel: Wenn Auth-Daten automatisch gesendet werden (Cookies), braucht man
CSRF-Schutz.

Alexander Erben

34

Spring Boot Advanced

CSRF deaktivieren (nur bei stateless Auth!)

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http
.csrf(csrf -> csrf.disable()) // Nur wenn JWT im Authorization Header!
.0oauth2ResourceServer (oauth2 -> oauth2.jwt(Customizer.withDefaults()))
cbuild();

Achtung: Nur deaktivieren, wenn:

e Authentifizierung Uber Authorization: Bearer Header

e Kelne Session-Cookies verwendet werden

Alexander Erben

35

Spring Boot Advanced

CSRF fur SPAs mit Cookie-Auth

Wenn Session-Cookies verwendet werden, muss das CSRF-Token zur SPA lbertragen
werden.

@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
return http
.csrf(csrf -> csrf
.csrfTokenRepository(CookieCsrfTokenRepository.withHttpOnlyFalse())
.csrfTokenRequestHandler (new SpaCsrfTokenRequestHandler())

)
build();

Das Token wird als Cookie XSRF-TOKEN gesendet. Die SPA liest es und sendet es als
Header X-XSRF-TOKEN zurlck.

Alexander Erben

36

Spring Boot Advanced

SpaCsrfTokenRequestHandler (Spring Security 6)

public class SpaCsrfTokenRequestHandler extends CsrfTokenRequestAttributeHandler {
private final CsrfTokenRequestHandler delegate = new XorCsrfTokenRequestAttributeHandler();

@Override
public void handle(HttpServletRequest request, HttpServletResponse response,
Supplier<CsrfToken> csrfToken) {
this.delegate.handle(request, response, csrfToken);

}

@Override
public String resolveCsrfTokenValue(HttpServletRequest request, CsrfToken csrfToken) {
// Header hat Prioritat (SPA), dann Form-Parameter (klassisch)
String header = request.getHeader(csrfToken.getHeaderName());
return (header != null) ? super.resolveCsrfTokenValue(request, csrfToken)
this.delegate.resolveCsrfTokenValue(request, csrfToken);

Alexander Erben

37

Spring Boot Advanced

Security Testing

Alexander Erben

38

Spring Boot Advanced

@WithMockUser

Simuliert einen authentifizierten User in Tests — ohne echte Authentifizierung.

@WebMvcTest (UserController.class)
class UserControllerSecurityTest {

@Autowired
private MockMvc mockMvc;

@Test
@withMockUser (username = "alice", roles = {"USER"})
void shouldAllowAccessForAuthenticatedUser() throws Exception {
mockMvc.perform(get("/api/profile"))
.andeExpect(status().1s0k());

}

@Test
void shouldDenyAccessForAnonymous() throws Exception {
mockMvc.perform(get("/api/profile"))

Alexander Erben .andExpect(status().isUnauthorized());
,

39

Spring Boot Advanced

@WithMockUser mit Custom Authorities

@Test
@withMockUser (
username = "admin",
authorities = {"SCOPE_read", "SCOPE_write'", "ROLE_ADMIN"}

)

vold shouldAllowAdminOperations() throws Exception {
mockMvc.perform(delete("/api/users/1"))
.andeExpect(status().1isNoContent());

Hinweis: roles = {"ADMIN"} flgt automatisch ROLE_ Prefix hinzu.
authorities erlaubt beliebige Authority-Strings.

Alexander Erben

40

Spring Boot Advanced

@WithUserDetalls

Ladt einen echten User aus dem userDetailsService — fur realistischere Tests.

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerIntegrationTest {

@Test
@withUserDetails(value = "alice@example.com", userDetailsServiceBeanName = "myUserDetailsService'")
void shouldLoadRealUserFromDatabase() throws Exception {
mockMvc.perform(get("/api/profile"))
.andExpect(status().1is0k())
.andExpect(jsonPath("$.email").value("alice@example.com"));

Alexander Erben

41

Spring Boot Advanced

Custom Security Context fur JWT

Fur OAuth2/JWT Tests kann man einen eigenen SecurityContext erstellen.

@Test
volid shouldAcceptValidJdwt() throws Exception {
mockMvc.perform(get("/api/data")
with(jwt()
.Jwt(builder -> builder

.Subject("user-123")

.claim("scope", "read write")

.claim("realm_access", Map.of("roles", List.of("user'")))

)
.authorities(new SimpleGrantedAuthority("SCOPE_read"))

))
.andexpect(status().is0k());

Dependency: spring-security-test

Alexander Erben

42

Spring Boot Advanced

Mutual TLS (mTLS)

Alexander Erben

43

Spring Boot Advanced

Was ist mTLS?

Bei normalem TLS authentifiziert sich nur der Server gegenuber dem Client.
Bei mTLS authentifizieren sich beide Seiten mit Zertifikaten.

e Use Case: Service-to-Service Kommunikation in Zero-Trust-Umgebungen

e Vorteil: Kein Passwort/Token notig, Zertifikat = Identitat

Alexander Erben

44

Spring Boot Advanced

MTLS Konfiguration (Server)

server:
port: 8443
ssl:
enabled: true
key-store: classpath:server-keystore.pl2
key-store-password: changeit
key-store-type: PKCS12

Client-Zertifikat erforderlich
client-auth: need # oder "want" fur optional

trust-store: classpath:truststore.pl2
trust-store-password: changeit

Alexander Erben

45

Spring Boot Advanced

Client-Zertifikat im Controller auslesen

@RestController
public class SecureController {

@GetMapping("/whoami")
public Map<String, String> whoAmI(HttpServletRequest request) {

¥
¥

Alexander Erben

X509Certificate[] certs = (X509Certificate[])
request.getAttribute("jakarta.servlet.request.X509Certificate");

if (certs != null && certs.length > 0) {
X500Principal principal = certs[0].getSubjectX500Principal();
return Map.of(
"cn", extractCN(principal.getName()),
"issuer'", certs[0].getIssuerX500Principal().getName()

)
}

return Map.of("error", '"No client certificate");

46

Spring Boot Advanced

MTLS mit RestClient (Client-Seite)

@Bean
public RestClient mtlsRestClient() throws Exception {
KeyStore keyStore = KeyStore.getInstance('"PKCS12");
keyStore.load(new FileInputStream("client-keystore.p12"), "changeit".toCharArray());

KeyStore trustStore = KeyStore.getInstance("PKCS12");
trustStore.load(new FileInputStream("truststore.pl12"), "changeit".toCharArray());

SSLContext sslContext = SSLContextBuilder.create()
.loadKeyMaterial(keyStore, "changeit".toCharArray())
.loadTrustMaterial(trustStore, null)
build();

HttpClient httpClient = HttpClient.create()
.secure(spec -> spec.sslContext(sslContext));

return RestClient.builder ()
.requestFactory(new ReactorClientHttpRequestFactory(httpClient))
.baseUrl("https://secure-service:8443")
cbuild();

}

Alexander Erben

47

Spring Boot Advanced

MTLS in Kubernetes

In der Praxis wird mTLS oft vom Service Mesh (Istio, Linkerd) Gbernommen:

e Automatic mTLS: Mesh injiziert Sidecar-Proxies
o Zertifikats-Rotation: Automatisch durch Mesh

o Application-Code: Bleibt unverandert (plain HTTP intern)

Istio PeerAuthentication
apiVersion: security.istio.io/vlbetal
kind: PeerAuthentication
metadata:

name: default
spec:

mtls:

mode: STRICT # Alle Services mussen mTLS verwenden

Alexander Erben

48

