Spring Boot Advanced

Spring Boot Messaging

Alexander Erben

Spring Boot Advanced

In diesem Modul

o Warum Messaging? Modelle (Queue vs. Topic) und typische Use Cases
e JMS mit Spring: Producer/Listener, Message Converter
AMQP/RabbitMQ: Exchanges/Bindings, Producer/Consumer, DLX/DLQ

Kafka: Topics/Partitionen, Producer/Consumer Groups, Serdes, Fehlerbehandlung

Reliability: Acks, Confirms, Retry/Backoff, Dead Letter

Spring Cloud Stream

Schema Reqgistry (Avro, Protobuf)

Saga Pattern & Distributed Transactions

Transactional Outbox (Polling & CDC/Debezium)

e |[dempotenz**

Alexanderfrt{glbu ngen

Spring Boot Advanced

Wiederholung: Warum Messaging?

e Asynchrone Kommunikation: Sender und Empfanger missen nicht gleichzeitig
verfugbar sein.

o Entkopplung: Services kennen sich nicht direkt, kommunizieren Uber
Nachrichtenkanale.

e Resilienz: Bei Ausfall eines Empfangers gehen Nachrichten nicht verloren
(werden gepuffert).

o Skalierbarkeit: Einfaches Hinzufligen weiterer Consumer ftr erhohten Durchsatz.

e Event-Driven Architectures (EDA): Basis fUr moderne verteilte Systeme.

Alexander Erben

Spring Boot Advanced

Wiederholung: Messaging-Modelle

1. Point-to-Point (Queues)

o Nachricht wird an eine Queue gesendet.
o Nur ein Consumer empfangt und verarbeitet die Nachricht.

o ldeal fur Work-Distribution und Lastverteilung.
2. Publish/Subscribe (Topics | Exchanges)

o Nachricht wird an ein Topic (oder Exchange) gesendet.

o Alle Subscriber, die das Topic abonniert haben, erhalten eine Kopie der
Nachricht.

o ldeal fir Benachrichtigungen und Event-Broadcasting.

Alexander Erben

Spring Boot Advanced

Wann nutzt man Messaging?

e Bestellabwicklung: Bestellung aufgeben (async zu Payment, Shipping,
Notification).

Benachrichtigungen: E-Mails, SMS, Push-Nachrichten versenden.

Daten-Integration: Synchronisierung von Daten zwischen Systemen.

Batch-Verarbeitung: Lange laufende Aufgaben auslagern.

Circuit Breaker | Bulkhead Pattern: Erh6hung der Systemstabllitat.

Alexander Erben

Spring Boot Advanced

JMS (Java Message Service) in Spring Boot

Alexander Erben

Spring Boot Advanced

Die JMS Spezifikation

e JMS ist eine Standard-API fir Messaging in Java.

e Definiert gemeinsame Konzepte: ConnectionFactory , Connection , Session,

MessageProducer , MessageConsumer , Queue , Topic , Message .

e Unabhangig vom konkreten Messaging-Anbieter (ActiveMQ, IBM MQ, TIBCO
EMS).

Alexander Erben

Spring Boot Advanced

Spring JMS mit ActiveMQ (Beispiel-Broker)
Dependency: spring-boot-starter-activemq

Nachrichten Senden (JmsTemplate)

@Service
public class OrderProducer {

private final JmsTemplate jmsTemplate;

public OrderProducer(JmsTemplate jmsTemplate) {
this.jmsTemplate = jmsTemplate;
b

public void sendOrder(Order order) {
System.out.println("Sending order: " + order.getId());
// Konvertiert das Objekt automatisch in eine JMS Message (z.B. TextMessage, ObjectMessage)
jmsTemplate.convertAndSend("orderQueue'", order);

b

public void sendOrderStatus(String status) {
System.out.println("Sending status update: " + status);
jmsTemplate.convertAndSend("orderTopic", status);

b

Alexander Erben

Spring Boot Advanced

Nachrichten Empfangen (@JmsListener)

@Component
public class OrderConsumer {

@IJmsListener(destination = "orderQueue")
public void receiveOrder(Order order) {
System.out.println("Recelived order: " + order.getId() + " - Processing...");
// Hier: Logik zur Verarbeitung der Bestellung
}
@IJmsListener(destination = "orderTopic", containerFactory = "jmsTopicFactory")
public void receiveOrderStatus(String status) {
System.out.println("Received status update on topic: " + status);
}

Alexander Erben

Spring Boot Advanced

Message Converters

 Wandeln Java-Objekte in javax.jms.Message und umgekehrt.

e Spring Boot konfiguriert standardmalig den MappingJackson2MessageConverter
fur JSON.

@Configuration
public class JmsConfig {

@Bean

public MessageConverter jacksonJmsMessageConverter() {
MappingJackson2MessageConverter converter = new MappingJackson2MessageConverter();
converter.setTargetType(MessageType.TEXT); // JSON als TextMessage
converter.setTypeldPropertyName("_type"); // Typ-Information fir Deserialisierung
return converter;

Alexander Erben

10

Spring Boot Advanced

Idempotenz

e Wichtig, da Nachrichten in verteilten Systemen mehrfach zugestellt werden
konnen ("at-least-once" Delivery).

e Eine Operation ist idempotent, wenn sie mehrmals ausgefuhrt werden kann, ohne
zusatzliche Seiteneffekte zu erzeugen.

e Strategien:
o Eindeutige Message-ID verfolgen.

o Status-Management (nur bei Status "pending" verarbeiten).

o Database Unique Constraints.

Alexander Erben

11

Spring Boot Advanced

AMQP In Spring Boot

Alexander Erben

12

Spring Boot Advanced

Das AMQP-Modell

e Ein offener Standard fir Messaging.
e Flexibler und machtiger als JMS, da das Routing-Modell entkoppelt ist.

e Wichtige Konzepte:
o Producer: Sendet Nachrichten.

o Exchange: Empfangt Nachrichten vom Producer und leitet sie an Queues
weiter.

o Binding: Eine Regel, die eine Queue an einen Exchange bindet.
o Queue: Speichert Nachrichten, bis sie von einem Consumer abgeholt werden.

o Consumer: Empfangt Nachrichten von einer Queue.

Alexander Erben 13

Spring Boot Advanced

Exchange Types

1. Direct Exchange:
o Nachricht geht an Queues, deren Binding Key exakt dem Routing Key der
Nachricht entspricht.
o |deal fur 1:1 oder 1:N Weiterleitung, wenn der Key bekannt ist.
2. Topic Exchange:
o Nachricht geht an Queues, deren Binding Key einem Wildcard-Muster des
Routing Keys entspricht.
o * : Ersetzt genau ein Wort.

o # : Ersetzt null oder mehr Worte.

o ldeal fir Pub/Sub mit feingranularer Filterung.

Alexander Erben

14

Spring Boot Advanced

1. Fanout Exchange:

o Nachricht geht an alle Queues, die an diesen Exchange gebunden sind
(Routing Key wird ignoriert).

o ldeal flr Broadcasting.
2. Headers Exchange:

o Leitet basierend auf den Headern der Nachricht weiter (seltener verwendet).

Alexander Erben

15

Spring Boot Advanced

Spring AMQP mit RabbitMQ

Dependency

spring-boot-starter-amqgp

Konfiguration (Minimal)

spring:
rabbitmqg:
host: localhost
port: 5672

username: guest
password: guest

Alexander Erben

16

Spring Boot Advanced

Nachrichten Senden (RabbitTemplate)

@Service
public class MessageProducer {

private final RabbitTemplate rabbitTemplate;

public MessageProducer(RabbitTemplate rabbitTemplate) {
this.rabbitTemplate = rabbitTemplate;
b

public void sendMessage(String exchange, String routingKey, Object message) {
System.out.println("Sending to exchange " + exchange + " with routingKey " + routingKey);
rabbitTemplate.convertAndSend(exchange, routingKey, message);

}

public void publishEvent(Object event) {
// Beispiel: Fanout Exchange fir Events
rabbitTemplate.convertAndSend("events.fanout", "", event);

Alexander Erben

17

Spring Boot Advanced

Nachrichten Empfangen (@RabbitListener)

@Component
public class MessageConsumer {

@RabbitListener(queues = "myQueue")

public void receiveMessage(String message) {
System.out.println("Received from myQueue: " + message);

b

@RabbitListener(queues = "logQueue'")
public void receivelLog(LogMessage log) {
System.out.println("Received Log: " + log.getLevel() + " -

// Hier konnte eine manuelle Acknowledge-Logik stattfinden
// channel.basicAck(deliveryTag, false);

Alexander Erben

" + log.getContent());

18

Spring Boot Advanced

Automatische Erstellung von Exchanges, Queues und Bindings

Spring AMQP kann diese bel Asnwendungsstart automatisch erstellen.

@Configuration
public class RabbitConfig {

@Bean
public Queue myQueue() {

return new Queue('"myQueue", true); // Name, durable
b

@Bean

public TopicExchange topicExchange() {
return new TopicExchange("logExchange");

b

@Bean
public Binding binding(Queue myQueue, TopicExchange topicExchange) {

return BindingBuilder.bind(myQueue).to(topicExchange).with("*.critical.#"); // Routing Key Muster
b

@Bean // Fanout Exchange fir Events

public FanoutExchange eventsFanoutExchange() {
return new FanoutExchange('"events.fanout");

}

}

Alexander Erben

19

Spring Boot Advanced

Reliable Messaging & Dead-Letter Queues

Alexander Erben

20

Spring Boot Advanced

Publisher Confirms & Returns

e Confirms: Der Broker bestatigt dem Publisher, dass er die Nachricht erhalten hat.

e Returns: Der Broker benachrichtigt den Publisher, wenn eine Nachricht an keinen
Consumer zugestellt werden konnte.

e Wichtig fur "at-least-once" oder "exactly-once" Semantik (mit Idempotenz).

// Konfiguration im RabbitTemplate
// rabbitTemplate.setConfirmCallback(...)
// rabbitTemplate.setReturnCallback(...)

Alexander Erben

21

Spring Boot Advanced

Consumer Acknowledgements

Wie ein Consumer dem Broker mitteilt, dass die Nachricht erfolgreich verarbeitet
wurde.

1. AuTo (Default in Spring Boot): Automatisch bei erfolgreicher
Methodenausfthrung.

2. MANUAL : Consumer muss explizit channel.basicAck() oder
channel.basicNack() aufrufen.
o Wichtig bel komplexer Verarbeitung, die fehlschlagen konnte.

Alexander Erben

22

Spring Boot Advanced

Dead-Letter Exchanges (DLX)

e Nachrichten, die nicht verarbeitet werden konnen (z.B. wegen Exceptions, NACKSs,
TTL-Ablauf), werden an einen speziellen Exchange (DLX) gesendet.

e Von dort konnen sie in eine Dead-Letter Queue (DLQ) geleitet werden.

e Wichtig fur Fehlerbehandlung und Auditing.

Alexander Erben

23

Spring Boot Advanced

Konfiguration einer Queue mit DLX

@Bean
public Queue processingQueue() {
return QueueBuilder.durable("processingQueue'")
.withArgument("x-dead-letter-exchange", "dlxExchange")
.withArgument('"x-dead-letter-routing-key", '"processing.dlq")
Lbuild();

}

@Bean
public DirectExchange dlxExchange() {

return new DirectExchange("dlxExchange");
b

@Bean
public Queue dlq() {

return new Queue("processing.dlq");
}

@Bean
public Binding dlgBinding(Queue dlqg, DirectExchange dlxExchange) {

return BindingBuilder.bind(dlq).to(dlxExchange).with("processing.dlq");
b

Alexander Erben

24

Spring Boot Advanced

Spring Boot und Kafka

Alexander Erben

25

Spring Boot Advanced

Die "Log-zentrierte" Architektur

o Kafka ist ein verteiltes Streaming-Plattform, kein klassischer Message Broker.

e Speichert Nachrichten in einem Commit Log (Topic).

e Nachrichten werden nicht "konsumiert" und geldscht, sondern bleiben flr eine
konfigurierbare Zeit erhalten.

Alexander Erben

26

Spring Boot Advanced

Kafka Kernkonzepte

Broker: Server, der Topics verwaltet.

Topic: Logischer Kanal flr Nachrichten.

Partition: Ein Topic ist in Partitionen unterteilt (Skalierung, Parallelisierung).
e Producer: Schreibt Nachrichten in Topics/Partitionen.

e Consumer: Liest Nachrichten aus Topics/Partitionen.

Consumer Group: Eine Gruppe von Consumern, die gemeinsam ein Topic
verarbeitet. Jede Nachricht in einer Partition wird nur an einen Consumer innerhalb
der Gruppe zugestellt.

Alexander Erben

27

Spring Boot Advanced

Apache Kafka in Spring

Dependency

spring-kafka
Konfiguration (Minimal)

spring:
kafka:
bootstrap-servers: localhost:9092 # Adressen der Kafka Broker
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
consumer :
group-id: my-service-group
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
auto-offset-reset: latest # Wo starten, wenn keine Offset gefunden

Alexander Erben 28

Spring Boot Advanced

Nachrichten Senden (KafkaTemplate)

@Service
public class EventProducer {

private final KafkaTemplate<String, Object> kafkaTemplate;

public EventProducer (KafkaTemplate<String, Object> kafkaTemplate) {
this.kafkaTemplate = kafkaTemplate;

3

public void publishUserCreatedEvent(UserCreatedEvent event) {
System.out.println("Publishing UserCreatedEvent: " + event.getUserId());
// Key wird fiUr Partitioning genutzt (alle Nachrichten mit gleichem Key landen in gleicher Partition)
kafkaTemplate.send("user-events-topic", event.getUserId().toString(), event);

Alexander Erben

29

Spring Boot Advanced

Nachrichten Empfangen (@KafkaListener)

@Component
public class UserEventListener {

@KafkaListener(topics = "user-events-topic", groupIld = "user-processor-group")
public void listen(UserCreatedEvent event, @Header(KafkaHeaders.RECEIVED_PARTITION) int partition) {
System.out.println("Received UserCreatedEvent for user " + event.getUserId() +
" from partition " + partition);
// ... Logik zur Verarbeitung des Events

Alexander Erben

30

Spring Boot Advanced

Serde (Serializer/Deserializer)

o Kafka Nachrichten sind Byte-Arrays.
e Producer muss Objekte serialisieren, Consumer deserialisieren.

e Spring Kafka bietet JsonSerializer / JsonDeserializer flr JSON.

Fehlerbehandlung

e Consumer Group Offsets: Kafka merkt sich pro Consumer Group den letzten
verarbeiteten Offset.
e Retry-Mechanismen: Bei Fehlern die Nachricht erneut versuchen.

e Dead-Letter Topics (DLT): Nachrichten, die dauerhaft nicht verarbeitet werden
konnen, an ein spezielles Error-Topic senden.

o Spring Kafka bietet DeadLetterPublishingRecoverer .

Alexander Erben

31

Spring Boot Advanced

Spring Cloud Stream

Alexander Erben

32

Spring Boot Advanced

Was ist Spring Cloud Stream?

Eine Abstraktionsschicht Giber Messaging-Systeme (Kafka, RabbitMQ, etc.).

e Binder: Adapter fur verschiedene Broker (Kafka Binder, Rabbit Binder, etc.)

e Functional Programming Model: Producer/Consumer als

Supplier / Consumer / Function

» Broker-Unabhangigkeit: Code bleibt gleich, nur Konfiguration andert sich

Alexander Erben

33

Spring Boot Advanced

Warum Spring Cloud Stream?

Aspekt Direkt (Spring KafkalAMQP) Spring Cloud Stream
Boilerplate Mehr Weniger
Broker-Wechsel Code-Anderung Nur Config
Testing Aufwandiger Test Binder verfligbar
Lernkurve Niedriger Hoher (Abstraktion)

Empfehlung: Cloud Stream flr Multi-Broker oder wenn Portabilitat wichtig ist.

Alexander Erben

34

Spring Boot Advanced

Dependency

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream</artifactId>
</dependency>
<l-- Binder fur Kafka -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

Alexander Erben

35

Spring Boot Advanced

Functional Model: Consumer

@Configuration
public class StreamConfig {

@Bean
public Consumer<OrderCreatedEvent> orderProcessor() {
return event -> {
System.out.println("Processing order: " + event.getOrderId());
// Business-Logik hier

+s

Konfiguration:

spring.cloud.stream.bindings.orderProcessor-in-0.destination: order-events

Alexander Erben

36

Spring Boot Advanced

Functional Model: Supplier (Producer)

@Bean
public Supplier<Flux<OrderStatusEvent>> orderStatusProducer() {
return () -> Flux.interval(Duration.ofSeconds(5))
.map(1 -> new OrderStatuskEvent("order-" + 1, "SHIPPED"));

spring.cloud.stream.bindings.orderStatusProducer-out-0.destination: order-status

Oder imperativ mit StreamBridge :

@Autowired StreamBridge streamBridge;

public void sendEvent(OrderCreatedEvent event) {
streamBridge.send("order-events", event);
¥

Alexander Erben 37

Spring Boot Advanced

Functional Model: Function (Processor)

Empfangt Input, transformiert, sendet Output.

@Bean
public Function<OrderCreatedEvent, OrderEnrichedEvent> enrichOrder() {
return event -> {
// Anreicherung mit zusadtzlichen Daten
return new OrderEnrichedEvent(
event.getOrderId(),
event.getAmount(),
calculateTax(event.getAmount())
);
i

spring.cloud.stream:
bindings:
enrichOrder-in-0.destination: raw-orders
Alexander ErbegnrichOrder-out-0.destination: enriched-orders

38

Spring Boot Advanced

Schema Registry

Alexander Erben

39

Spring Boot Advanced

Das Problem: Schema Evolution

Nachrichten-Schemas andern sich Uber Zeit:

e Neue Felder hinzugeflgt
e Felder entfernt oder umbenannt

e Typen geandert

Ohne Schema Registry: Deserialisierung schlagt fehl - Downtime.

Alexander Erben

40

Spring Boot Advanced

Schema Registry Konzept

Ein zentraler Server speichert und versioniert Schemas.

1. Producer registriert Schema vor dem Senden
2. Nachricht enthalt Schema-ID (nicht das ganze Schema)

3. Consumer ladt Schema von Registry und deserialisiert

Tools: Confluent Schema Registry, AWS Glue, Apicurio

Alexander Erben

41

Spring Boot Advanced

Unterstutzte Formate

Format Beschreibung Vortelil
Avro Binar, Schema-basiert Kompakt, Schema Evolution
Protobuf Binar, Google-Standard Performance, Typed
JSON Schema Text-basiert Lesbar, weit verbreitet

Empfehlung: Avro fir High-Throughput, JISON Schema fur Debugging.

Alexander Erben

42

Spring Boot Advanced

Avro Schema Beispiel

order.avsc:
{

"type": "record",

"name": "Order",

"namespace": "com.example.events",

"fields": [
{"name": "orderId", "type": "string"},
{"name": "amount", "type": "double"},

{"name": "currency", "type": "string", "default": "EUR"},
{"name": "metadata", "type": ["null", "string"], "default": null}

]
¥

default ermdoglicht Backward Compatibility!

Alexander Erben 43

Spring Boot Advanced

Spring Kafka mit Schema Registry

spring:
kafka:
properties:
schema.registry.url: http://localhost:8081
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
consumer :
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
properties:
specific.avro.reader: true

Alexander Erben

44

Spring Boot Advanced

Compatibility Modes
Schema Registry prift Kompatibilitdt beim Registrieren:

Mode Beschreibung
BACKWARD Neue Consumer konnen alte Nachrichten lesen
FORWARD Alte Consumer kbnnen neue Nachrichten lesen
FULL Beides (Empfohlen!)
NONE Keine Prufung (gefahrlich)

Compatibility setzen

curl -X PUT http://localhost:8081/config/order-events-value \
-H "Content-Type: application/json" \
-d "{"compatibility": "FULL"}'

Alexander Erben

45

Spring Boot Advanced

Saga Pattern & Distributed Transactions

Alexander Erben

46

Spring Boot Advanced

Das Problem: Vertelilte Transaktionen

In Microservices konnen wir keine klassischen ACID-Transaktionen uber Service-
Grenzen nutzen.

o JTA/XA: Funktioniert nicht gut mit REST (zustandslos, Blocking, keine Protokoll-
Unterstltzung)

e Alternative: Das Saga Pattern — eine Folge von lokalen Transaktionen mit
Kompensationslogik

Saga ist tatséchlich kein Akronym. Es steht einfach nur flir eine lange Geschichte.

Alexander Erben 47

Spring Boot Advanced

Saga-Ansatz 1: Choreography (Event-Driven)

Jeder Service entscheidet selbst, was zu tun ist. Es gibt keinen zentralen Koordinator.

o Ablauf: orderService — Event. OrderCreated — InventoryService -
Event. GoodsReserved — PaymentService

e Pro: Lose Kopplung, keine zentrale Logik

e Con: Unubersichtlich ("Wer hort auf wen?"), zyklische Abhéngigkeiten schwer zu
erkennen

Passt gut zu: Kafka, RabbitMQ mit Topics/Fanout

Alexander Erben

48

Spring Boot Advanced

Saga-Ansatz 2: Orchestration (Command-Driven)

Ein zentraler "Conductor" (Klasse oder Service) kennt den gesamten Ablauf und sagt
den Teilnehmern, was sie tun sollen.

e Ablauf: Orchestrator ruft Inventory.reserve() auf. Bel Erfolg ruft er
Payment.charge() auf.

e Pro: Klarer Ablauf, einfache Fehlerbehandlung, zentraler Zustand

e Con: Orchestrator kann zum "Gott-Service" werden (zu viel Logik)

Tools: Camunda, Temporal, eigene State Machine

Alexander Erben

49

Spring Boot Advanced
Saga Orchestration: Naive Implementierung

@Service

public class OrderSagaOrchestrator {
@Autowired private OrderRepository orderRepo;
@Autowired private RestClient inventoryClient;
@Autowired private RestClient paymentClient;

public void placeOrder(Order order) {
orderRepo.save(order); // 1. Local TX

try {
// 2. Remote Steps (Commands)

inventoryClient.post().uri("/reserve").body(order).retrieve();
paymentClient.post().uri("/charge").body(order).retrieve();
order.setStatus(OrderStatus.CONFIRMED);
orderRepo.save(order);

} catch (Exception e) {
// KOMPENSATION - Problem: Was wenn dieser Call fehlschlagt?
inventoryClient.post().uri("/release").body(order).retrieve();
order.setStatus(OrderStatus.FAILED);
orderRepo.save(order);

I Achtung: Fragil! Bei Crash im catch -Block — inkonsistenter Zustand.

Alexander Erben

50

Spring Boot Advanced

Das Dual-Write Problem

Die naive Saga-Implementierung hat ein fundamentales Problem: Dual Write.

e Wir schreiben in die Datenbank (Order speichern)
« UND senden Events/HTTP-Calls (Inventory, Payment)

e Was passiert, wenn das System zwischen diesen Schritten abstlrzt?

- Das Outbox Pattern |0st dieses Problem elegant.

Alexander Erben

51

Spring Boot Advanced

Transactional Outbox Pattern

Alexander Erben

52

Spring Boot Advanced

Das Outbox Pattern

Problem: Wie garantiere ich, dass sowohl die DB-Anderung als auch das Event
veroffentlicht werden?

Losung: Wir schreiben das Event in eine Outbox-Tabelle in derselben Transaktion wie
die Geschéaftsdaten.

Ablauf
1. Business-Logik speichert Daten + Event in outbox -Tabelle (gleiche TX)
2. Ein separater Prozess (Polling oder CDC) liest die Outbox und publiziert Events

3. Nach erfolgreicher Publikation wird der Outbox-Eintrag geléscht/markiert

53

Alexander Erben

Spring Boot Advanced

Outbox Entity

@Entity

@Table(name = "outbox")

public class OutboxEvent {
@Id @GeneratedValue
private Long 1id;
private String aggregateType; // z.B.
private String aggregateld; // z.B.
private String eventType; // z.B.

@Column(columnDefinition = "TEXT")
private String payload; // JSON

private Instant createdAt;
private boolean published;

Alexander Erben

"Order"
"12345"
"OrderCreated"

54

Spring Boot Advanced

Outbox: Speichern in einer Transaktion

@Service
public class OrderService {

@Transactional
public Order createOrder(Order order) {
// 1. Business-Daten speichern
Order saved = orderRepository.save(order);

// 2. Event in Outbox schreiben (gleiche Transaktion!)
OutboxEvent event = new OutboxEvent();
event.setAggregateType("Order");
event.setAggregatelId(saved.getId().toString());
event.setEventType("OrderCreated");
event.setPayload(objectMapper.writeValueAsString(saved));
outboxRepository.save(event);

return saved;

}

Alexandgr Erben

55

Spring Boot Advanced

Outbox: Publisher (Polling-Variante)

@Component
public class OutboxPublisher {

@Scheduled(fixedDelay = 1000)
@Transactional
public void publishPendingEvents() {
List<OutboxEvent> events = outboxRepository.findByPublishedFalse();

for (OutboxEvent event : events) {
try {
kafkaTemplate.send('"domain-events", event.getAggregateId(), event.getPayload());
event.setPublished(true); // Oder: outboxRepository.delete(event);
} catch (Exception e) {
log.warn("Event {} konnte nicht publiziert werden", event.getId());
// Retry beim ndchsten Durchlauf

Alexander Erben

56

Spring Boot Advanced

ldempotenz

Alexander Erben

S7

Spring Boot Advanced

Warum Idempotenz?

In verteilten Systemen kdonnen Nachrichten mehrfach zugestellt werden ("at-least-
once" delivery).

e Problem: releaseInventory() wird zweimal aufgerufen — Bestand wird doppelt
ernont

e LOosung: Idempotency Key tracken

Eine Operation ist idempotent, wenn sie mehrmals ausgefiihrt werden kann, ohne
zusatzliche Seiteneffekte zu erzeugen.

Alexander Erben

58

Spring Boot Advanced

Idempotenz: Implementierung

@Service
public class InventoryService {

@Transactional
public void releaseInventory(String orderId, String idempotencyKey) {
// Priufen, ob diese Operation bereits durchgefihrt wurde
if (processedOperationRepository.existsByKey(idempotencyKey)) {
log.info("Operation {} bereits verarbeitet, Uberspringe", idempotencyKey);
return;

}

// Geschaftslogik ausfihren

Inventory inv = inventoryRepository.findByOrderId(orderId);
inv.release();

inventoryRepository.save(inv);

// Operation als verarbeitet markieren
processedOperationRepository.save(new ProcessedOperation(idempotencyKey));

}

Alexander Erben

59

Spring Boot Advanced

Idempotency Key Strategien

Strategie Beispiel Vortelil
Message-ID msg.getMessageld() Broker liefert ID
Composite Key orderId + "_release" Deterministisch

Client-Generated UUID im Header Volle Kontrolle

Wichtig: Der Key muss die Operation identifizieren, nicht nur die Nachricht!

Alexander Erben

60

Spring Boot Advanced

Transactional Outbox mit Debezium (CDC)

Alexander Erben

61

Spring Boot Advanced

Von Polling zu CDC

Die Polling-Variante des Outbox Patterns hat Nachtelile:

e Latenz (je nach Polling-Intervall)

e Zusatzliche DB-Last

Alternative: Change Data Capture (CDC) mit Debezium.

Alexander Erben

62

Spring Boot Advanced

Change Data Capture (CDC)

Statt Polling der Outbox-Tabelle: Debezium liest das Datenbank-Log (WAL/Binlog).

e Vorteil: Keine zusatzliche Last auf der DB
e Vorteil: Near-Realtime (Millisekunden)

e Nachteil: Komplexeres Setup (Debezium Connector)

Alexander Erben

63

Spring Boot Advanced

Debezium Outbox Architektur

Spring Boot
(TX: Order +
Outbox)

v

Postgres

Alexander Erben

Debezium

Connector
(CDC)

v

Liest WAL/Binlog

(kein Polling!)

Kafka
Topic

64

Spring Boot Advanced

Debezium Outbox Transformer

Debezium bietet einen speziellen Outbox Event Router:

{
"name": "outbox-connector",
"config": {
"connector.class": "io.debezium.connector.postgresgl.PostgresConnector",
"transforms": "outbox",
"transforms.outbox.type": "io.debezium.transforms.outbox.EventRouter",
"transforms.outbox.table.field.event.key": "aggregate_id",
"transforms.outbox.table.field.event.type": "event_type",
"transforms.outbox.table.field.event.payload": "payload",
"transforms.outbox.route.topic.replacement": "${routedByvValue}"
}
h

Das Outbox-Event wird automatisch ins richtige Topic geroutet!

Alexander Erben

