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In diesem Modul

Warum Messaging? Modelle (Queue vs. Topic) und typische Use Cases

JMS mit Spring: Producer/Listener, Message Converter

AMQP/RabbitMQ: Exchanges/Bindings, Producer/Consumer, DLX/DLQ

Kafka: Topics/Partitionen, Producer/Consumer Groups, Serdes, Fehlerbehandlung

Reliability: Acks, Confirms, Retry/Backoff, Dead Letter

Spring Cloud Stream

Schema Registry (Avro, Protobuf)

Saga Pattern & Distributed Transactions

Transactional Outbox (Polling & CDC/Debezium)

Idempotenz**

Übungen
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Wiederholung: Warum Messaging?

Asynchrone Kommunikation: Sender und Empfänger müssen nicht gleichzeitig
verfügbar sein.

Entkopplung: Services kennen sich nicht direkt, kommunizieren über
Nachrichtenkanäle.

Resilienz: Bei Ausfall eines Empfängers gehen Nachrichten nicht verloren

(werden gepuffert).

Skalierbarkeit: Einfaches Hinzufügen weiterer Consumer für erhöhten Durchsatz.

Event-Driven Architectures (EDA): Basis für moderne verteilte Systeme.
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Wiederholung: Messaging-Modelle

1. Point-to-Point (Queues)

Nachricht wird an eine Queue gesendet.

Nur ein Consumer empfängt und verarbeitet die Nachricht.

Ideal für Work-Distribution und Lastverteilung.

2. Publish/Subscribe (Topics / Exchanges)

Nachricht wird an ein Topic (oder Exchange) gesendet.

Alle Subscriber, die das Topic abonniert haben, erhalten eine Kopie der
Nachricht.

Ideal für Benachrichtigungen und Event-Broadcasting.
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Wann nutzt man Messaging?

Bestellabwicklung: Bestellung aufgeben (async zu Payment, Shipping,

Notification).

Benachrichtigungen: E-Mails, SMS, Push-Nachrichten versenden.

Daten-Integration: Synchronisierung von Daten zwischen Systemen.

Batch-Verarbeitung: Lange laufende Aufgaben auslagern.

Circuit Breaker / Bulkhead Pattern: Erhöhung der Systemstabilität.
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JMS (Java Message Service) in Spring Boot
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Die JMS Spezifikation

JMS ist eine Standard-API für Messaging in Java.

Definiert gemeinsame Konzepte: ConnectionFactory , Connection , Session ,
MessageProducer , MessageConsumer , Queue , Topic , Message .

Unabhängig vom konkreten Messaging-Anbieter (ActiveMQ, IBM MQ, TIBCO

EMS).
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Spring JMS mit ActiveMQ (Beispiel-Broker)

Dependency: spring-boot-starter-activemq

Nachrichten Senden ( JmsTemplate )

@Service
public class OrderProducer {

    private final JmsTemplate jmsTemplate;

    public OrderProducer(JmsTemplate jmsTemplate) {
        this.jmsTemplate = jmsTemplate;
    }

    public void sendOrder(Order order) {
        System.out.println("Sending order: " + order.getId());
        // Konvertiert das Objekt automatisch in eine JMS Message (z.B. TextMessage, ObjectMessage)
        jmsTemplate.convertAndSend("orderQueue", order);
    }
    
    public void sendOrderStatus(String status) {
        System.out.println("Sending status update: " + status);
        jmsTemplate.convertAndSend("orderTopic", status);
    }
}
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Nachrichten Empfangen ( @JmsListener )

@Component
public class OrderConsumer {

    @JmsListener(destination = "orderQueue")
    public void receiveOrder(Order order) {
        System.out.println("Received order: " + order.getId() + " - Processing...");
        // Hier: Logik zur Verarbeitung der Bestellung
    }

    @JmsListener(destination = "orderTopic", containerFactory = "jmsTopicFactory")
    public void receiveOrderStatus(String status) {
        System.out.println("Received status update on topic: " + status);
    }
}
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Message Converters

Wandeln Java-Objekte in javax.jms.Message  und umgekehrt.

Spring Boot konfiguriert standardmäßig den MappingJackson2MessageConverter

für JSON.

@Configuration
public class JmsConfig {

    @Bean
    public MessageConverter jacksonJmsMessageConverter() {
        MappingJackson2MessageConverter converter = new MappingJackson2MessageConverter();
        converter.setTargetType(MessageType.TEXT); // JSON als TextMessage
        converter.setTypeIdPropertyName("_type"); // Typ-Information für Deserialisierung
        return converter;
    }
}
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Idempotenz

Wichtig, da Nachrichten in verteilten Systemen mehrfach zugestellt werden

können ("at-least-once" Delivery).

Eine Operation ist idempotent, wenn sie mehrmals ausgeführt werden kann, ohne
zusätzliche Seiteneffekte zu erzeugen.

Strategien:
Eindeutige Message-ID verfolgen.

Status-Management (nur bei Status "pending" verarbeiten).

Database Unique Constraints.
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AMQP in Spring Boot
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Das AMQP-Modell

Ein offener Standard für Messaging.

Flexibler und mächtiger als JMS, da das Routing-Modell entkoppelt ist.

Wichtige Konzepte:

Producer: Sendet Nachrichten.

Exchange: Empfängt Nachrichten vom Producer und leitet sie an Queues

weiter.

Binding: Eine Regel, die eine Queue an einen Exchange bindet.

Queue: Speichert Nachrichten, bis sie von einem Consumer abgeholt werden.

Consumer: Empfängt Nachrichten von einer Queue.
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Exchange Types

1. Direct Exchange:

Nachricht geht an Queues, deren Binding Key exakt dem Routing Key der

Nachricht entspricht.

Ideal für 1:1 oder 1:N Weiterleitung, wenn der Key bekannt ist.

2. Topic Exchange:

Nachricht geht an Queues, deren Binding Key einem Wildcard-Muster des
Routing Keys entspricht.

* : Ersetzt genau ein Wort.

# : Ersetzt null oder mehr Worte.

Ideal für Pub/Sub mit feingranularer Filterung.

Spring Boot Advanced

Alexander Erben 14



1. Fanout Exchange:

Nachricht geht an alle Queues, die an diesen Exchange gebunden sind

(Routing Key wird ignoriert).

Ideal für Broadcasting.

2. Headers Exchange:

Leitet basierend auf den Headern der Nachricht weiter (seltener verwendet).
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Spring AMQP mit RabbitMQ

Dependency

spring-boot-starter-amqp

Konfiguration (Minimal)

spring:
  rabbitmq:
    host: localhost
    port: 5672
    username: guest
    password: guest
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Nachrichten Senden (RabbitTemplate)

@Service
public class MessageProducer {

    private final RabbitTemplate rabbitTemplate;

    public MessageProducer(RabbitTemplate rabbitTemplate) {
        this.rabbitTemplate = rabbitTemplate;
    }

    public void sendMessage(String exchange, String routingKey, Object message) {
        System.out.println("Sending to exchange " + exchange + " with routingKey " + routingKey);
        rabbitTemplate.convertAndSend(exchange, routingKey, message);
    }
    
    public void publishEvent(Object event) {
        // Beispiel: Fanout Exchange für Events
        rabbitTemplate.convertAndSend("events.fanout", "", event); 
    }
}
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Nachrichten Empfangen (@RabbitListener)

@Component
public class MessageConsumer {

    @RabbitListener(queues = "myQueue")
    public void receiveMessage(String message) {
        System.out.println("Received from myQueue: " + message);
    }

    @RabbitListener(queues = "logQueue")
    public void receiveLog(LogMessage log) {
        System.out.println("Received Log: " + log.getLevel() + " - " + log.getContent());
        // Hier könnte eine manuelle Acknowledge-Logik stattfinden
        // channel.basicAck(deliveryTag, false);
    }
}
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Automatische Erstellung von Exchanges, Queues und Bindings

Spring AMQP kann diese bei Anwendungsstart automatisch erstellen.

@Configuration
public class RabbitConfig {

    @Bean
    public Queue myQueue() {
        return new Queue("myQueue", true); // Name, durable
    }

    @Bean
    public TopicExchange topicExchange() {
        return new TopicExchange("logExchange");
    }

    @Bean
    public Binding binding(Queue myQueue, TopicExchange topicExchange) {
        return BindingBuilder.bind(myQueue).to(topicExchange).with("*.critical.#"); // Routing Key Muster
    }
    
    @Bean // Fanout Exchange für Events
    public FanoutExchange eventsFanoutExchange() {
        return new FanoutExchange("events.fanout");
    }
}
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Reliable Messaging & Dead-Letter Queues

Spring Boot Advanced

Alexander Erben 20



Publisher Confirms & Returns

Confirms: Der Broker bestätigt dem Publisher, dass er die Nachricht erhalten hat.

Returns: Der Broker benachrichtigt den Publisher, wenn eine Nachricht an keinen

Consumer zugestellt werden konnte.

Wichtig für "at-least-once" oder "exactly-once" Semantik (mit Idempotenz).

// Konfiguration im RabbitTemplate
// rabbitTemplate.setConfirmCallback(...)
// rabbitTemplate.setReturnCallback(...)
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Consumer Acknowledgements

Wie ein Consumer dem Broker mitteilt, dass die Nachricht erfolgreich verarbeitet

wurde.

1. AUTO  (Default in Spring Boot): Automatisch bei erfolgreicher

Methodenausführung.

2. MANUAL : Consumer muss explizit channel.basicAck()  oder
channel.basicNack()  aufrufen.

Wichtig bei komplexer Verarbeitung, die fehlschlagen könnte.
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Dead-Letter Exchanges (DLX)

Nachrichten, die nicht verarbeitet werden können (z.B. wegen Exceptions, NACKs,
TTL-Ablauf), werden an einen speziellen Exchange (DLX) gesendet.

Von dort können sie in eine Dead-Letter Queue (DLQ) geleitet werden.

Wichtig für Fehlerbehandlung und Auditing.
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Konfiguration einer Queue mit DLX

@Bean
public Queue processingQueue() {
    return QueueBuilder.durable("processingQueue")
            .withArgument("x-dead-letter-exchange", "dlxExchange")
            .withArgument("x-dead-letter-routing-key", "processing.dlq")
            .build();
}

@Bean
public DirectExchange dlxExchange() {
    return new DirectExchange("dlxExchange");
}

@Bean
public Queue dlq() {
    return new Queue("processing.dlq");
}

@Bean
public Binding dlqBinding(Queue dlq, DirectExchange dlxExchange) {
    return BindingBuilder.bind(dlq).to(dlxExchange).with("processing.dlq");
}
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Spring Boot und Kafka
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Die "Log-zentrierte" Architektur

Kafka ist ein verteiltes Streaming-Plattform, kein klassischer Message Broker.

Speichert Nachrichten in einem Commit Log (Topic).

Nachrichten werden nicht "konsumiert" und gelöscht, sondern bleiben für eine

konfigurierbare Zeit erhalten.
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Kafka Kernkonzepte

Broker: Server, der Topics verwaltet.

Topic: Logischer Kanal für Nachrichten.

Partition: Ein Topic ist in Partitionen unterteilt (Skalierung, Parallelisierung).

Producer: Schreibt Nachrichten in Topics/Partitionen.

Consumer: Liest Nachrichten aus Topics/Partitionen.

Consumer Group: Eine Gruppe von Consumern, die gemeinsam ein Topic
verarbeitet. Jede Nachricht in einer Partition wird nur an einen Consumer innerhalb
der Gruppe zugestellt.
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Apache Kafka in Spring

Dependency

spring-kafka

Konfiguration (Minimal)

spring:
  kafka:
    bootstrap-servers: localhost:9092 # Adressen der Kafka Broker
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
    consumer:
      group-id: my-service-group
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
      auto-offset-reset: latest # Wo starten, wenn keine Offset gefunden
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Nachrichten Senden (KafkaTemplate)

@Service
public class EventProducer {

    private final KafkaTemplate<String, Object> kafkaTemplate;

    public EventProducer(KafkaTemplate<String, Object> kafkaTemplate) {
        this.kafkaTemplate = kafkaTemplate;
    }

    public void publishUserCreatedEvent(UserCreatedEvent event) {
        System.out.println("Publishing UserCreatedEvent: " + event.getUserId());
        // Key wird für Partitioning genutzt (alle Nachrichten mit gleichem Key landen in gleicher Partition)
        kafkaTemplate.send("user-events-topic", event.getUserId().toString(), event);
    }
}
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Nachrichten Empfangen (@KafkaListener)

@Component
public class UserEventListener {

    @KafkaListener(topics = "user-events-topic", groupId = "user-processor-group")
    public void listen(UserCreatedEvent event, @Header(KafkaHeaders.RECEIVED_PARTITION) int partition) {
        System.out.println("Received UserCreatedEvent for user " + event.getUserId() + 
                           " from partition " + partition);
        // ... Logik zur Verarbeitung des Events
    }
}
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Serde (Serializer/Deserializer)

Kafka Nachrichten sind Byte-Arrays.

Producer muss Objekte serialisieren, Consumer deserialisieren.

Spring Kafka bietet JsonSerializer  / JsonDeserializer  für JSON.

Fehlerbehandlung

Consumer Group Offsets: Kafka merkt sich pro Consumer Group den letzten
verarbeiteten Offset.

Retry-Mechanismen: Bei Fehlern die Nachricht erneut versuchen.

Dead-Letter Topics (DLT): Nachrichten, die dauerhaft nicht verarbeitet werden
können, an ein spezielles Error-Topic senden.

Spring Kafka bietet DeadLetterPublishingRecoverer .
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Spring Cloud Stream
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Was ist Spring Cloud Stream?

Eine Abstraktionsschicht über Messaging-Systeme (Kafka, RabbitMQ, etc.).

Binder: Adapter für verschiedene Broker (Kafka Binder, Rabbit Binder, etc.)

Functional Programming Model: Producer/Consumer als
Supplier / Consumer / Function

Broker-Unabhängigkeit: Code bleibt gleich, nur Konfiguration ändert sich
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Warum Spring Cloud Stream?

Aspekt Direkt (Spring Kafka/AMQP) Spring Cloud Stream

Boilerplate Mehr Weniger

Broker-Wechsel Code-Änderung Nur Config

Testing Aufwändiger Test Binder verfügbar

Lernkurve Niedriger Höher (Abstraktion)

Empfehlung: Cloud Stream für Multi-Broker oder wenn Portabilität wichtig ist.
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Dependency

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-stream</artifactId>
</dependency>
<!-- Binder für Kafka -->
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>
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Functional Model: Consumer

@Configuration
public class StreamConfig {

    @Bean
    public Consumer<OrderCreatedEvent> orderProcessor() {
        return event -> {
            System.out.println("Processing order: " + event.getOrderId());
            // Business-Logik hier
        };
    }
}

Konfiguration:

spring.cloud.stream.bindings.orderProcessor-in-0.destination: order-events
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Functional Model: Supplier (Producer)

@Bean
public Supplier<Flux<OrderStatusEvent>> orderStatusProducer() {
    return () -> Flux.interval(Duration.ofSeconds(5))
        .map(i -> new OrderStatusEvent("order-" + i, "SHIPPED"));
}

spring.cloud.stream.bindings.orderStatusProducer-out-0.destination: order-status

Oder imperativ mit StreamBridge :

@Autowired StreamBridge streamBridge;

public void sendEvent(OrderCreatedEvent event) {
    streamBridge.send("order-events", event);
}
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Functional Model: Function (Processor)

Empfängt Input, transformiert, sendet Output.

@Bean
public Function<OrderCreatedEvent, OrderEnrichedEvent> enrichOrder() {
    return event -> {
        // Anreicherung mit zusätzlichen Daten
        return new OrderEnrichedEvent(
            event.getOrderId(),
            event.getAmount(),
            calculateTax(event.getAmount())
        );
    };
}

spring.cloud.stream:
  bindings:
    enrichOrder-in-0.destination: raw-orders
    enrichOrder-out-0.destination: enriched-orders
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Schema Registry
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Das Problem: Schema Evolution

Nachrichten-Schemas ändern sich über Zeit:

Neue Felder hinzugefügt

Felder entfernt oder umbenannt

Typen geändert

Ohne Schema Registry: Deserialisierung schlägt fehl → Downtime.
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Schema Registry Konzept

Ein zentraler Server speichert und versioniert Schemas.

1. Producer registriert Schema vor dem Senden

2. Nachricht enthält Schema-ID (nicht das ganze Schema)

3. Consumer lädt Schema von Registry und deserialisiert

Tools: Confluent Schema Registry, AWS Glue, Apicurio
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Unterstützte Formate

Format Beschreibung Vorteil

Avro Binär, Schema-basiert Kompakt, Schema Evolution

Protobuf Binär, Google-Standard Performance, Typed

JSON Schema Text-basiert Lesbar, weit verbreitet

Empfehlung: Avro für High-Throughput, JSON Schema für Debugging.
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Avro Schema Beispiel

order.avsc:

{
  "type": "record",
  "name": "Order",
  "namespace": "com.example.events",
  "fields": [
    {"name": "orderId", "type": "string"},
    {"name": "amount", "type": "double"},
    {"name": "currency", "type": "string", "default": "EUR"},
    {"name": "metadata", "type": ["null", "string"], "default": null}
  ]
}

default  ermöglicht Backward Compatibility!
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Spring Kafka mit Schema Registry

spring:
  kafka:
    properties:
      schema.registry.url: http://localhost:8081
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
    consumer:
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
      properties:
        specific.avro.reader: true
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Compatibility Modes

Schema Registry prüft Kompatibilität beim Registrieren:

Mode Beschreibung

BACKWARD Neue Consumer können alte Nachrichten lesen

FORWARD Alte Consumer können neue Nachrichten lesen

FULL Beides (Empfohlen!)

NONE Keine Prüfung (gefährlich)

# Compatibility setzen
curl -X PUT http://localhost:8081/config/order-events-value \
  -H "Content-Type: application/json" \
  -d '{"compatibility": "FULL"}'
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Saga Pattern & Distributed Transactions
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Das Problem: Verteilte Transaktionen

In Microservices können wir keine klassischen ACID-Transaktionen über Service-

Grenzen nutzen.

JTA/XA: Funktioniert nicht gut mit REST (zustandslos, Blocking, keine Protokoll-

Unterstützung)

Alternative: Das Saga Pattern – eine Folge von lokalen Transaktionen mit
Kompensationslogik

Saga ist tatsächlich kein Akronym. Es steht einfach nur für eine lange Geschichte.
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Saga-Ansatz 1: Choreography (Event-Driven)

Jeder Service entscheidet selbst, was zu tun ist. Es gibt keinen zentralen Koordinator.

Ablauf: OrderService  → Event: OrderCreated  → InventoryService  →

Event: GoodsReserved  → PaymentService

Pro: Lose Kopplung, keine zentrale Logik

Con: Unübersichtlich ("Wer hört auf wen?"), zyklische Abhängigkeiten schwer zu

erkennen

Passt gut zu: Kafka, RabbitMQ mit Topics/Fanout
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Saga-Ansatz 2: Orchestration (Command-Driven)

Ein zentraler "Conductor" (Klasse oder Service) kennt den gesamten Ablauf und sagt
den Teilnehmern, was sie tun sollen.

Ablauf: Orchestrator ruft Inventory.reserve()  auf. Bei Erfolg ruft er
Payment.charge()  auf.

Pro: Klarer Ablauf, einfache Fehlerbehandlung, zentraler Zustand

Con: Orchestrator kann zum "Gott-Service" werden (zu viel Logik)

Tools: Camunda, Temporal, eigene State Machine
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Saga Orchestration: Naive Implementierung

@Service
public class OrderSagaOrchestrator {
    @Autowired private OrderRepository orderRepo;
    @Autowired private RestClient inventoryClient;
    @Autowired private RestClient paymentClient;

    public void placeOrder(Order order) {
        orderRepo.save(order); // 1. Local TX

        try {
            // 2. Remote Steps (Commands)
            inventoryClient.post().uri("/reserve").body(order).retrieve();
            paymentClient.post().uri("/charge").body(order).retrieve();
            order.setStatus(OrderStatus.CONFIRMED);
            orderRepo.save(order);
        } catch (Exception e) {
            // KOMPENSATION - Problem: Was wenn dieser Call fehlschlägt?
            inventoryClient.post().uri("/release").body(order).retrieve();
            order.setStatus(OrderStatus.FAILED);
            orderRepo.save(order);
        }
    }
}

 Achtung: Fragil! Bei Crash im catch -Block → inkonsistenter Zustand.

Spring Boot Advanced

Alexander Erben 50



Das Dual-Write Problem

Die naive Saga-Implementierung hat ein fundamentales Problem: Dual Write.

Wir schreiben in die Datenbank (Order speichern)

UND senden Events/HTTP-Calls (Inventory, Payment)

Was passiert, wenn das System zwischen diesen Schritten abstürzt?

→ Das Outbox Pattern löst dieses Problem elegant.
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Transactional Outbox Pattern
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Das Outbox Pattern

Problem: Wie garantiere ich, dass sowohl die DB-Änderung als auch das Event
veröffentlicht werden?

Lösung: Wir schreiben das Event in eine Outbox-Tabelle in derselben Transaktion wie
die Geschäftsdaten.

Ablauf

1. Business-Logik speichert Daten + Event in outbox -Tabelle (gleiche TX)

2. Ein separater Prozess (Polling oder CDC) liest die Outbox und publiziert Events

3. Nach erfolgreicher Publikation wird der Outbox-Eintrag gelöscht/markiert
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Outbox Entity

@Entity
@Table(name = "outbox")
public class OutboxEvent {
    @Id @GeneratedValue
    private Long id;
    private String aggregateType;  // z.B. "Order"
    private String aggregateId;    // z.B. "12345"
    private String eventType;      // z.B. "OrderCreated"

    @Column(columnDefinition = "TEXT")
    private String payload;        // JSON

    private Instant createdAt;
    private boolean published;
}
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Outbox: Speichern in einer Transaktion

@Service
public class OrderService {

    @Transactional
    public Order createOrder(Order order) {
        // 1. Business-Daten speichern
        Order saved = orderRepository.save(order);

        // 2. Event in Outbox schreiben (gleiche Transaktion!)
        OutboxEvent event = new OutboxEvent();
        event.setAggregateType("Order");
        event.setAggregateId(saved.getId().toString());
        event.setEventType("OrderCreated");
        event.setPayload(objectMapper.writeValueAsString(saved));
        outboxRepository.save(event);

        return saved;
    }
}
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Outbox: Publisher (Polling-Variante)

@Component
public class OutboxPublisher {

    @Scheduled(fixedDelay = 1000)
    @Transactional
    public void publishPendingEvents() {
        List<OutboxEvent> events = outboxRepository.findByPublishedFalse();

        for (OutboxEvent event : events) {
            try {
                kafkaTemplate.send("domain-events", event.getAggregateId(), event.getPayload());
                event.setPublished(true);  // Oder: outboxRepository.delete(event);
            } catch (Exception e) {
                log.warn("Event {} konnte nicht publiziert werden", event.getId());
                // Retry beim nächsten Durchlauf
            }
        }
    }
}
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Idempotenz
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Warum Idempotenz?

In verteilten Systemen können Nachrichten mehrfach zugestellt werden ("at-least-

once" delivery).

Problem: releaseInventory()  wird zweimal aufgerufen → Bestand wird doppelt

erhöht

Lösung: Idempotency Key tracken

Eine Operation ist idempotent, wenn sie mehrmals ausgeführt werden kann, ohne

zusätzliche Seiteneffekte zu erzeugen.
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Idempotenz: Implementierung

@Service
public class InventoryService {

    @Transactional
    public void releaseInventory(String orderId, String idempotencyKey) {
        // Prüfen, ob diese Operation bereits durchgeführt wurde
        if (processedOperationRepository.existsByKey(idempotencyKey)) {
            log.info("Operation {} bereits verarbeitet, überspringe", idempotencyKey);
            return;
        }

        // Geschäftslogik ausführen
        Inventory inv = inventoryRepository.findByOrderId(orderId);
        inv.release();
        inventoryRepository.save(inv);

        // Operation als verarbeitet markieren
        processedOperationRepository.save(new ProcessedOperation(idempotencyKey));
    }
}
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Idempotency Key Strategien

Strategie Beispiel Vorteil

Message-ID msg.getMessageId() Broker liefert ID

Composite Key orderId + "_release" Deterministisch

Client-Generated UUID im Header Volle Kontrolle

Wichtig: Der Key muss die Operation identifizieren, nicht nur die Nachricht!
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Transactional Outbox mit Debezium (CDC)
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Von Polling zu CDC

Die Polling-Variante des Outbox Patterns hat Nachteile:

Latenz (je nach Polling-Intervall)

Zusätzliche DB-Last

Alternative: Change Data Capture (CDC) mit Debezium.
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Change Data Capture (CDC)

Statt Polling der Outbox-Tabelle: Debezium liest das Datenbank-Log (WAL/Binlog).

Vorteil: Keine zusätzliche Last auf der DB

Vorteil: Near-Realtime (Millisekunden)

Nachteil: Komplexeres Setup (Debezium Connector)
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Debezium Outbox Architektur

┌─────────────────┐      ┌─────────────┐      ┌─────────┐
│  Spring Boot    │      │  Debezium   │      │  Kafka  │
│  (TX: Order +   │ ──   │  Connector  │ ──   │  Topic  │
│   Outbox)       │      │  (CDC)      │      │         │
└─────────────────┘      └─────────────┘      └─────────┘
         │                      │
         ▼                      ▼
   ┌──────────┐          Liest WAL/Binlog
   │ Postgres │          (kein Polling!)
   └──────────┘
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Debezium Outbox Transformer

Debezium bietet einen speziellen Outbox Event Router:

{
  "name": "outbox-connector",
  "config": {
    "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
    "transforms": "outbox",
    "transforms.outbox.type": "io.debezium.transforms.outbox.EventRouter",
    "transforms.outbox.table.field.event.key": "aggregate_id",
    "transforms.outbox.table.field.event.type": "event_type",
    "transforms.outbox.table.field.event.payload": "payload",
    "transforms.outbox.route.topic.replacement": "${routedByValue}"
  }
}

Das Outbox-Event wird automatisch ins richtige Topic geroutet!
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