
Spring Boot Messaging

Spring Boot Advanced

Alexander Erben 1

In diesem Modul

Warum Messaging? Modelle (Queue vs. Topic) und typische Use Cases

JMS mit Spring: Producer/Listener, Message Converter

AMQP/RabbitMQ: Exchanges/Bindings, Producer/Consumer, DLX/DLQ

Kafka: Topics/Partitionen, Producer/Consumer Groups, Serdes, Fehlerbehandlung

Reliability: Acks, Confirms, Retry/Backoff, Dead Letter

Spring Cloud Stream

Schema Registry (Avro, Protobuf)

Saga Pattern & Distributed Transactions

Transactional Outbox (Polling & CDC/Debezium)

Idempotenz**

Übungen

Spring Boot Advanced

Alexander Erben 2

Wiederholung: Warum Messaging?

Asynchrone Kommunikation: Sender und Empfänger müssen nicht gleichzeitig
verfügbar sein.

Entkopplung: Services kennen sich nicht direkt, kommunizieren über
Nachrichtenkanäle.

Resilienz: Bei Ausfall eines Empfängers gehen Nachrichten nicht verloren

(werden gepuffert).

Skalierbarkeit: Einfaches Hinzufügen weiterer Consumer für erhöhten Durchsatz.

Event-Driven Architectures (EDA): Basis für moderne verteilte Systeme.

Spring Boot Advanced

Alexander Erben 3

Wiederholung: Messaging-Modelle

1. Point-to-Point (Queues)

Nachricht wird an eine Queue gesendet.

Nur ein Consumer empfängt und verarbeitet die Nachricht.

Ideal für Work-Distribution und Lastverteilung.

2. Publish/Subscribe (Topics / Exchanges)

Nachricht wird an ein Topic (oder Exchange) gesendet.

Alle Subscriber, die das Topic abonniert haben, erhalten eine Kopie der
Nachricht.

Ideal für Benachrichtigungen und Event-Broadcasting.

Spring Boot Advanced

Alexander Erben 4

Wann nutzt man Messaging?

Bestellabwicklung: Bestellung aufgeben (async zu Payment, Shipping,

Notification).

Benachrichtigungen: E-Mails, SMS, Push-Nachrichten versenden.

Daten-Integration: Synchronisierung von Daten zwischen Systemen.

Batch-Verarbeitung: Lange laufende Aufgaben auslagern.

Circuit Breaker / Bulkhead Pattern: Erhöhung der Systemstabilität.

Spring Boot Advanced

Alexander Erben 5

JMS (Java Message Service) in Spring Boot

Spring Boot Advanced

Alexander Erben 6

Die JMS Spezifikation

JMS ist eine Standard-API für Messaging in Java.

Definiert gemeinsame Konzepte: ConnectionFactory , Connection , Session ,
MessageProducer , MessageConsumer , Queue , Topic , Message .

Unabhängig vom konkreten Messaging-Anbieter (ActiveMQ, IBM MQ, TIBCO

EMS).

Spring Boot Advanced

Alexander Erben 7

Spring JMS mit ActiveMQ (Beispiel-Broker)

Dependency: spring-boot-starter-activemq

Nachrichten Senden (JmsTemplate)

@Service
public class OrderProducer {

 private final JmsTemplate jmsTemplate;

 public OrderProducer(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
 }

 public void sendOrder(Order order) {
 System.out.println("Sending order: " + order.getId());
 // Konvertiert das Objekt automatisch in eine JMS Message (z.B. TextMessage, ObjectMessage)
 jmsTemplate.convertAndSend("orderQueue", order);
 }

 public void sendOrderStatus(String status) {
 System.out.println("Sending status update: " + status);
 jmsTemplate.convertAndSend("orderTopic", status);
 }
}

Spring Boot Advanced

Alexander Erben 8

Nachrichten Empfangen (@JmsListener)

@Component
public class OrderConsumer {

 @JmsListener(destination = "orderQueue")
 public void receiveOrder(Order order) {
 System.out.println("Received order: " + order.getId() + " - Processing...");
 // Hier: Logik zur Verarbeitung der Bestellung
 }

 @JmsListener(destination = "orderTopic", containerFactory = "jmsTopicFactory")
 public void receiveOrderStatus(String status) {
 System.out.println("Received status update on topic: " + status);
 }
}

Spring Boot Advanced

Alexander Erben 9

Message Converters

Wandeln Java-Objekte in javax.jms.Message und umgekehrt.

Spring Boot konfiguriert standardmäßig den MappingJackson2MessageConverter

für JSON.

@Configuration
public class JmsConfig {

 @Bean
 public MessageConverter jacksonJmsMessageConverter() {
 MappingJackson2MessageConverter converter = new MappingJackson2MessageConverter();
 converter.setTargetType(MessageType.TEXT); // JSON als TextMessage
 converter.setTypeIdPropertyName("_type"); // Typ-Information für Deserialisierung
 return converter;
 }
}

Spring Boot Advanced

Alexander Erben 10

Idempotenz

Wichtig, da Nachrichten in verteilten Systemen mehrfach zugestellt werden

können ("at-least-once" Delivery).

Eine Operation ist idempotent, wenn sie mehrmals ausgeführt werden kann, ohne
zusätzliche Seiteneffekte zu erzeugen.

Strategien:
Eindeutige Message-ID verfolgen.

Status-Management (nur bei Status "pending" verarbeiten).

Database Unique Constraints.

Spring Boot Advanced

Alexander Erben 11

AMQP in Spring Boot

Spring Boot Advanced

Alexander Erben 12

Das AMQP-Modell

Ein offener Standard für Messaging.

Flexibler und mächtiger als JMS, da das Routing-Modell entkoppelt ist.

Wichtige Konzepte:

Producer: Sendet Nachrichten.

Exchange: Empfängt Nachrichten vom Producer und leitet sie an Queues

weiter.

Binding: Eine Regel, die eine Queue an einen Exchange bindet.

Queue: Speichert Nachrichten, bis sie von einem Consumer abgeholt werden.

Consumer: Empfängt Nachrichten von einer Queue.

Spring Boot Advanced

Alexander Erben 13

Exchange Types

1. Direct Exchange:

Nachricht geht an Queues, deren Binding Key exakt dem Routing Key der

Nachricht entspricht.

Ideal für 1:1 oder 1:N Weiterleitung, wenn der Key bekannt ist.

2. Topic Exchange:

Nachricht geht an Queues, deren Binding Key einem Wildcard-Muster des
Routing Keys entspricht.

* : Ersetzt genau ein Wort.

: Ersetzt null oder mehr Worte.

Ideal für Pub/Sub mit feingranularer Filterung.

Spring Boot Advanced

Alexander Erben 14

1. Fanout Exchange:

Nachricht geht an alle Queues, die an diesen Exchange gebunden sind

(Routing Key wird ignoriert).

Ideal für Broadcasting.

2. Headers Exchange:

Leitet basierend auf den Headern der Nachricht weiter (seltener verwendet).

Spring Boot Advanced

Alexander Erben 15

Spring AMQP mit RabbitMQ

Dependency

spring-boot-starter-amqp

Konfiguration (Minimal)

spring:
 rabbitmq:
 host: localhost
 port: 5672
 username: guest
 password: guest

Spring Boot Advanced

Alexander Erben 16

Nachrichten Senden (RabbitTemplate)

@Service
public class MessageProducer {

 private final RabbitTemplate rabbitTemplate;

 public MessageProducer(RabbitTemplate rabbitTemplate) {
 this.rabbitTemplate = rabbitTemplate;
 }

 public void sendMessage(String exchange, String routingKey, Object message) {
 System.out.println("Sending to exchange " + exchange + " with routingKey " + routingKey);
 rabbitTemplate.convertAndSend(exchange, routingKey, message);
 }

 public void publishEvent(Object event) {
 // Beispiel: Fanout Exchange für Events
 rabbitTemplate.convertAndSend("events.fanout", "", event);
 }
}

Spring Boot Advanced

Alexander Erben 17

Nachrichten Empfangen (@RabbitListener)

@Component
public class MessageConsumer {

 @RabbitListener(queues = "myQueue")
 public void receiveMessage(String message) {
 System.out.println("Received from myQueue: " + message);
 }

 @RabbitListener(queues = "logQueue")
 public void receiveLog(LogMessage log) {
 System.out.println("Received Log: " + log.getLevel() + " - " + log.getContent());
 // Hier könnte eine manuelle Acknowledge-Logik stattfinden
 // channel.basicAck(deliveryTag, false);
 }
}

Spring Boot Advanced

Alexander Erben 18

Automatische Erstellung von Exchanges, Queues und Bindings

Spring AMQP kann diese bei Anwendungsstart automatisch erstellen.

@Configuration
public class RabbitConfig {

 @Bean
 public Queue myQueue() {
 return new Queue("myQueue", true); // Name, durable
 }

 @Bean
 public TopicExchange topicExchange() {
 return new TopicExchange("logExchange");
 }

 @Bean
 public Binding binding(Queue myQueue, TopicExchange topicExchange) {
 return BindingBuilder.bind(myQueue).to(topicExchange).with("*.critical.#"); // Routing Key Muster
 }

 @Bean // Fanout Exchange für Events
 public FanoutExchange eventsFanoutExchange() {
 return new FanoutExchange("events.fanout");
 }
}

Spring Boot Advanced

Alexander Erben 19

Reliable Messaging & Dead-Letter Queues

Spring Boot Advanced

Alexander Erben 20

Publisher Confirms & Returns

Confirms: Der Broker bestätigt dem Publisher, dass er die Nachricht erhalten hat.

Returns: Der Broker benachrichtigt den Publisher, wenn eine Nachricht an keinen

Consumer zugestellt werden konnte.

Wichtig für "at-least-once" oder "exactly-once" Semantik (mit Idempotenz).

// Konfiguration im RabbitTemplate
// rabbitTemplate.setConfirmCallback(...)
// rabbitTemplate.setReturnCallback(...)

Spring Boot Advanced

Alexander Erben 21

Consumer Acknowledgements

Wie ein Consumer dem Broker mitteilt, dass die Nachricht erfolgreich verarbeitet

wurde.

1. AUTO (Default in Spring Boot): Automatisch bei erfolgreicher

Methodenausführung.

2. MANUAL : Consumer muss explizit channel.basicAck() oder
channel.basicNack() aufrufen.

Wichtig bei komplexer Verarbeitung, die fehlschlagen könnte.

Spring Boot Advanced

Alexander Erben 22

Dead-Letter Exchanges (DLX)

Nachrichten, die nicht verarbeitet werden können (z.B. wegen Exceptions, NACKs,
TTL-Ablauf), werden an einen speziellen Exchange (DLX) gesendet.

Von dort können sie in eine Dead-Letter Queue (DLQ) geleitet werden.

Wichtig für Fehlerbehandlung und Auditing.

Spring Boot Advanced

Alexander Erben 23

Konfiguration einer Queue mit DLX

@Bean
public Queue processingQueue() {
 return QueueBuilder.durable("processingQueue")
 .withArgument("x-dead-letter-exchange", "dlxExchange")
 .withArgument("x-dead-letter-routing-key", "processing.dlq")
 .build();
}

@Bean
public DirectExchange dlxExchange() {
 return new DirectExchange("dlxExchange");
}

@Bean
public Queue dlq() {
 return new Queue("processing.dlq");
}

@Bean
public Binding dlqBinding(Queue dlq, DirectExchange dlxExchange) {
 return BindingBuilder.bind(dlq).to(dlxExchange).with("processing.dlq");
}

Spring Boot Advanced

Alexander Erben 24

Spring Boot und Kafka

Spring Boot Advanced

Alexander Erben 25

Die "Log-zentrierte" Architektur

Kafka ist ein verteiltes Streaming-Plattform, kein klassischer Message Broker.

Speichert Nachrichten in einem Commit Log (Topic).

Nachrichten werden nicht "konsumiert" und gelöscht, sondern bleiben für eine

konfigurierbare Zeit erhalten.

Spring Boot Advanced

Alexander Erben 26

Kafka Kernkonzepte

Broker: Server, der Topics verwaltet.

Topic: Logischer Kanal für Nachrichten.

Partition: Ein Topic ist in Partitionen unterteilt (Skalierung, Parallelisierung).

Producer: Schreibt Nachrichten in Topics/Partitionen.

Consumer: Liest Nachrichten aus Topics/Partitionen.

Consumer Group: Eine Gruppe von Consumern, die gemeinsam ein Topic
verarbeitet. Jede Nachricht in einer Partition wird nur an einen Consumer innerhalb
der Gruppe zugestellt.

Spring Boot Advanced

Alexander Erben 27

Apache Kafka in Spring

Dependency

spring-kafka

Konfiguration (Minimal)

spring:
 kafka:
 bootstrap-servers: localhost:9092 # Adressen der Kafka Broker
 producer:
 key-serializer: org.apache.kafka.common.serialization.StringSerializer
 value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
 consumer:
 group-id: my-service-group
 key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
 value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
 auto-offset-reset: latest # Wo starten, wenn keine Offset gefunden

Spring Boot Advanced

Alexander Erben 28

Nachrichten Senden (KafkaTemplate)

@Service
public class EventProducer {

 private final KafkaTemplate<String, Object> kafkaTemplate;

 public EventProducer(KafkaTemplate<String, Object> kafkaTemplate) {
 this.kafkaTemplate = kafkaTemplate;
 }

 public void publishUserCreatedEvent(UserCreatedEvent event) {
 System.out.println("Publishing UserCreatedEvent: " + event.getUserId());
 // Key wird für Partitioning genutzt (alle Nachrichten mit gleichem Key landen in gleicher Partition)
 kafkaTemplate.send("user-events-topic", event.getUserId().toString(), event);
 }
}

Spring Boot Advanced

Alexander Erben 29

Nachrichten Empfangen (@KafkaListener)

@Component
public class UserEventListener {

 @KafkaListener(topics = "user-events-topic", groupId = "user-processor-group")
 public void listen(UserCreatedEvent event, @Header(KafkaHeaders.RECEIVED_PARTITION) int partition) {
 System.out.println("Received UserCreatedEvent for user " + event.getUserId() +
 " from partition " + partition);
 // ... Logik zur Verarbeitung des Events
 }
}

Spring Boot Advanced

Alexander Erben 30

Serde (Serializer/Deserializer)

Kafka Nachrichten sind Byte-Arrays.

Producer muss Objekte serialisieren, Consumer deserialisieren.

Spring Kafka bietet JsonSerializer / JsonDeserializer für JSON.

Fehlerbehandlung

Consumer Group Offsets: Kafka merkt sich pro Consumer Group den letzten
verarbeiteten Offset.

Retry-Mechanismen: Bei Fehlern die Nachricht erneut versuchen.

Dead-Letter Topics (DLT): Nachrichten, die dauerhaft nicht verarbeitet werden
können, an ein spezielles Error-Topic senden.

Spring Kafka bietet DeadLetterPublishingRecoverer .

Spring Boot Advanced

Alexander Erben 31

Spring Cloud Stream

Spring Boot Advanced

Alexander Erben 32

Was ist Spring Cloud Stream?

Eine Abstraktionsschicht über Messaging-Systeme (Kafka, RabbitMQ, etc.).

Binder: Adapter für verschiedene Broker (Kafka Binder, Rabbit Binder, etc.)

Functional Programming Model: Producer/Consumer als
Supplier / Consumer / Function

Broker-Unabhängigkeit: Code bleibt gleich, nur Konfiguration ändert sich

Spring Boot Advanced

Alexander Erben 33

Warum Spring Cloud Stream?

Aspekt Direkt (Spring Kafka/AMQP) Spring Cloud Stream

Boilerplate Mehr Weniger

Broker-Wechsel Code-Änderung Nur Config

Testing Aufwändiger Test Binder verfügbar

Lernkurve Niedriger Höher (Abstraktion)

Empfehlung: Cloud Stream für Multi-Broker oder wenn Portabilität wichtig ist.

Spring Boot Advanced

Alexander Erben 34

Dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
</dependency>
<!-- Binder für Kafka -->
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

Spring Boot Advanced

Alexander Erben 35

Functional Model: Consumer

@Configuration
public class StreamConfig {

 @Bean
 public Consumer<OrderCreatedEvent> orderProcessor() {
 return event -> {
 System.out.println("Processing order: " + event.getOrderId());
 // Business-Logik hier
 };
 }
}

Konfiguration:

spring.cloud.stream.bindings.orderProcessor-in-0.destination: order-events

Spring Boot Advanced

Alexander Erben 36

Functional Model: Supplier (Producer)

@Bean
public Supplier<Flux<OrderStatusEvent>> orderStatusProducer() {
 return () -> Flux.interval(Duration.ofSeconds(5))
 .map(i -> new OrderStatusEvent("order-" + i, "SHIPPED"));
}

spring.cloud.stream.bindings.orderStatusProducer-out-0.destination: order-status

Oder imperativ mit StreamBridge :

@Autowired StreamBridge streamBridge;

public void sendEvent(OrderCreatedEvent event) {
 streamBridge.send("order-events", event);
}

Spring Boot Advanced

Alexander Erben 37

Functional Model: Function (Processor)

Empfängt Input, transformiert, sendet Output.

@Bean
public Function<OrderCreatedEvent, OrderEnrichedEvent> enrichOrder() {
 return event -> {
 // Anreicherung mit zusätzlichen Daten
 return new OrderEnrichedEvent(
 event.getOrderId(),
 event.getAmount(),
 calculateTax(event.getAmount())
);
 };
}

spring.cloud.stream:
 bindings:
 enrichOrder-in-0.destination: raw-orders
 enrichOrder-out-0.destination: enriched-orders

Spring Boot Advanced

Alexander Erben 38

Schema Registry

Spring Boot Advanced

Alexander Erben 39

Das Problem: Schema Evolution

Nachrichten-Schemas ändern sich über Zeit:

Neue Felder hinzugefügt

Felder entfernt oder umbenannt

Typen geändert

Ohne Schema Registry: Deserialisierung schlägt fehl → Downtime.

Spring Boot Advanced

Alexander Erben 40

Schema Registry Konzept

Ein zentraler Server speichert und versioniert Schemas.

1. Producer registriert Schema vor dem Senden

2. Nachricht enthält Schema-ID (nicht das ganze Schema)

3. Consumer lädt Schema von Registry und deserialisiert

Tools: Confluent Schema Registry, AWS Glue, Apicurio

Spring Boot Advanced

Alexander Erben 41

Unterstützte Formate

Format Beschreibung Vorteil

Avro Binär, Schema-basiert Kompakt, Schema Evolution

Protobuf Binär, Google-Standard Performance, Typed

JSON Schema Text-basiert Lesbar, weit verbreitet

Empfehlung: Avro für High-Throughput, JSON Schema für Debugging.

Spring Boot Advanced

Alexander Erben 42

Avro Schema Beispiel

order.avsc:

{
 "type": "record",
 "name": "Order",
 "namespace": "com.example.events",
 "fields": [
 {"name": "orderId", "type": "string"},
 {"name": "amount", "type": "double"},
 {"name": "currency", "type": "string", "default": "EUR"},
 {"name": "metadata", "type": ["null", "string"], "default": null}
]
}

default ermöglicht Backward Compatibility!

Spring Boot Advanced

Alexander Erben 43

Spring Kafka mit Schema Registry

spring:
 kafka:
 properties:
 schema.registry.url: http://localhost:8081
 producer:
 key-serializer: org.apache.kafka.common.serialization.StringSerializer
 value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
 consumer:
 key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
 value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
 properties:
 specific.avro.reader: true

Spring Boot Advanced

Alexander Erben 44

Compatibility Modes

Schema Registry prüft Kompatibilität beim Registrieren:

Mode Beschreibung

BACKWARD Neue Consumer können alte Nachrichten lesen

FORWARD Alte Consumer können neue Nachrichten lesen

FULL Beides (Empfohlen!)

NONE Keine Prüfung (gefährlich)

Compatibility setzen
curl -X PUT http://localhost:8081/config/order-events-value \
 -H "Content-Type: application/json" \
 -d '{"compatibility": "FULL"}'

Spring Boot Advanced

Alexander Erben 45

Saga Pattern & Distributed Transactions

Spring Boot Advanced

Alexander Erben 46

Das Problem: Verteilte Transaktionen

In Microservices können wir keine klassischen ACID-Transaktionen über Service-

Grenzen nutzen.

JTA/XA: Funktioniert nicht gut mit REST (zustandslos, Blocking, keine Protokoll-

Unterstützung)

Alternative: Das Saga Pattern – eine Folge von lokalen Transaktionen mit
Kompensationslogik

Saga ist tatsächlich kein Akronym. Es steht einfach nur für eine lange Geschichte.

Spring Boot Advanced

Alexander Erben 47

Saga-Ansatz 1: Choreography (Event-Driven)

Jeder Service entscheidet selbst, was zu tun ist. Es gibt keinen zentralen Koordinator.

Ablauf: OrderService → Event: OrderCreated → InventoryService →

Event: GoodsReserved → PaymentService

Pro: Lose Kopplung, keine zentrale Logik

Con: Unübersichtlich ("Wer hört auf wen?"), zyklische Abhängigkeiten schwer zu

erkennen

Passt gut zu: Kafka, RabbitMQ mit Topics/Fanout

Spring Boot Advanced

Alexander Erben 48

Saga-Ansatz 2: Orchestration (Command-Driven)

Ein zentraler "Conductor" (Klasse oder Service) kennt den gesamten Ablauf und sagt
den Teilnehmern, was sie tun sollen.

Ablauf: Orchestrator ruft Inventory.reserve() auf. Bei Erfolg ruft er
Payment.charge() auf.

Pro: Klarer Ablauf, einfache Fehlerbehandlung, zentraler Zustand

Con: Orchestrator kann zum "Gott-Service" werden (zu viel Logik)

Tools: Camunda, Temporal, eigene State Machine

Spring Boot Advanced

Alexander Erben 49

Saga Orchestration: Naive Implementierung

@Service
public class OrderSagaOrchestrator {
 @Autowired private OrderRepository orderRepo;
 @Autowired private RestClient inventoryClient;
 @Autowired private RestClient paymentClient;

 public void placeOrder(Order order) {
 orderRepo.save(order); // 1. Local TX

 try {
 // 2. Remote Steps (Commands)
 inventoryClient.post().uri("/reserve").body(order).retrieve();
 paymentClient.post().uri("/charge").body(order).retrieve();
 order.setStatus(OrderStatus.CONFIRMED);
 orderRepo.save(order);
 } catch (Exception e) {
 // KOMPENSATION - Problem: Was wenn dieser Call fehlschlägt?
 inventoryClient.post().uri("/release").body(order).retrieve();
 order.setStatus(OrderStatus.FAILED);
 orderRepo.save(order);
 }
 }
}

 Achtung: Fragil! Bei Crash im catch -Block → inkonsistenter Zustand.

Spring Boot Advanced

Alexander Erben 50

Das Dual-Write Problem

Die naive Saga-Implementierung hat ein fundamentales Problem: Dual Write.

Wir schreiben in die Datenbank (Order speichern)

UND senden Events/HTTP-Calls (Inventory, Payment)

Was passiert, wenn das System zwischen diesen Schritten abstürzt?

→ Das Outbox Pattern löst dieses Problem elegant.

Spring Boot Advanced

Alexander Erben 51

Transactional Outbox Pattern

Spring Boot Advanced

Alexander Erben 52

Das Outbox Pattern

Problem: Wie garantiere ich, dass sowohl die DB-Änderung als auch das Event
veröffentlicht werden?

Lösung: Wir schreiben das Event in eine Outbox-Tabelle in derselben Transaktion wie
die Geschäftsdaten.

Ablauf

1. Business-Logik speichert Daten + Event in outbox -Tabelle (gleiche TX)

2. Ein separater Prozess (Polling oder CDC) liest die Outbox und publiziert Events

3. Nach erfolgreicher Publikation wird der Outbox-Eintrag gelöscht/markiert

Spring Boot Advanced

Alexander Erben 53

Outbox Entity

@Entity
@Table(name = "outbox")
public class OutboxEvent {
 @Id @GeneratedValue
 private Long id;
 private String aggregateType; // z.B. "Order"
 private String aggregateId; // z.B. "12345"
 private String eventType; // z.B. "OrderCreated"

 @Column(columnDefinition = "TEXT")
 private String payload; // JSON

 private Instant createdAt;
 private boolean published;
}

Spring Boot Advanced

Alexander Erben 54

Outbox: Speichern in einer Transaktion

@Service
public class OrderService {

 @Transactional
 public Order createOrder(Order order) {
 // 1. Business-Daten speichern
 Order saved = orderRepository.save(order);

 // 2. Event in Outbox schreiben (gleiche Transaktion!)
 OutboxEvent event = new OutboxEvent();
 event.setAggregateType("Order");
 event.setAggregateId(saved.getId().toString());
 event.setEventType("OrderCreated");
 event.setPayload(objectMapper.writeValueAsString(saved));
 outboxRepository.save(event);

 return saved;
 }
}

Spring Boot Advanced

Alexander Erben 55

Outbox: Publisher (Polling-Variante)

@Component
public class OutboxPublisher {

 @Scheduled(fixedDelay = 1000)
 @Transactional
 public void publishPendingEvents() {
 List<OutboxEvent> events = outboxRepository.findByPublishedFalse();

 for (OutboxEvent event : events) {
 try {
 kafkaTemplate.send("domain-events", event.getAggregateId(), event.getPayload());
 event.setPublished(true); // Oder: outboxRepository.delete(event);
 } catch (Exception e) {
 log.warn("Event {} konnte nicht publiziert werden", event.getId());
 // Retry beim nächsten Durchlauf
 }
 }
 }
}

Spring Boot Advanced

Alexander Erben 56

Idempotenz

Spring Boot Advanced

Alexander Erben 57

Warum Idempotenz?

In verteilten Systemen können Nachrichten mehrfach zugestellt werden ("at-least-

once" delivery).

Problem: releaseInventory() wird zweimal aufgerufen → Bestand wird doppelt

erhöht

Lösung: Idempotency Key tracken

Eine Operation ist idempotent, wenn sie mehrmals ausgeführt werden kann, ohne

zusätzliche Seiteneffekte zu erzeugen.

Spring Boot Advanced

Alexander Erben 58

Idempotenz: Implementierung

@Service
public class InventoryService {

 @Transactional
 public void releaseInventory(String orderId, String idempotencyKey) {
 // Prüfen, ob diese Operation bereits durchgeführt wurde
 if (processedOperationRepository.existsByKey(idempotencyKey)) {
 log.info("Operation {} bereits verarbeitet, überspringe", idempotencyKey);
 return;
 }

 // Geschäftslogik ausführen
 Inventory inv = inventoryRepository.findByOrderId(orderId);
 inv.release();
 inventoryRepository.save(inv);

 // Operation als verarbeitet markieren
 processedOperationRepository.save(new ProcessedOperation(idempotencyKey));
 }
}

Spring Boot Advanced

Alexander Erben 59

Idempotency Key Strategien

Strategie Beispiel Vorteil

Message-ID msg.getMessageId() Broker liefert ID

Composite Key orderId + "_release" Deterministisch

Client-Generated UUID im Header Volle Kontrolle

Wichtig: Der Key muss die Operation identifizieren, nicht nur die Nachricht!

Spring Boot Advanced

Alexander Erben 60

Transactional Outbox mit Debezium (CDC)

Spring Boot Advanced

Alexander Erben 61

Von Polling zu CDC

Die Polling-Variante des Outbox Patterns hat Nachteile:

Latenz (je nach Polling-Intervall)

Zusätzliche DB-Last

Alternative: Change Data Capture (CDC) mit Debezium.

Spring Boot Advanced

Alexander Erben 62

Change Data Capture (CDC)

Statt Polling der Outbox-Tabelle: Debezium liest das Datenbank-Log (WAL/Binlog).

Vorteil: Keine zusätzliche Last auf der DB

Vorteil: Near-Realtime (Millisekunden)

Nachteil: Komplexeres Setup (Debezium Connector)

Spring Boot Advanced

Alexander Erben 63

Debezium Outbox Architektur

┌─────────────────┐ ┌─────────────┐ ┌─────────┐
│ Spring Boot │ │ Debezium │ │ Kafka │
│ (TX: Order + │ ── │ Connector │ ── │ Topic │
│ Outbox) │ │ (CDC) │ │ │
└─────────────────┘ └─────────────┘ └─────────┘
 │ │
 ▼ ▼
 ┌──────────┐ Liest WAL/Binlog
 │ Postgres │ (kein Polling!)
 └──────────┘

Spring Boot Advanced

Alexander Erben 64

Debezium Outbox Transformer

Debezium bietet einen speziellen Outbox Event Router:

{
 "name": "outbox-connector",
 "config": {
 "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
 "transforms": "outbox",
 "transforms.outbox.type": "io.debezium.transforms.outbox.EventRouter",
 "transforms.outbox.table.field.event.key": "aggregate_id",
 "transforms.outbox.table.field.event.type": "event_type",
 "transforms.outbox.table.field.event.payload": "payload",
 "transforms.outbox.route.topic.replacement": "${routedByValue}"
 }
}

Das Outbox-Event wird automatisch ins richtige Topic geroutet!

Spring Boot Advanced

Alexander Erben 65

